Third Hankel determinant for univalent starlike functions

Paweł Zaprawa1, Milutin Obradović2, Nikola Tuneski3
1Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618, Lublin, Poland
2Department of Mathematics, Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade, 11000, Serbia
3Department of Mathematics and Informatics, Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000, Skopje, Republic of North Macedonia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Babalola, K.O.: On $$H_3(1)$$ Hankel determinants for some classes of univalent functions. In: Dragomir, S.S., Cho, J.Y. (eds.) Inequality theory and applications, vol. 6, pp. 1–7. Nova Science Publishers, New York (2010)

Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 2(13), 1–5 (1914)

Carlson, F.: Sur les coefficients d’une fonction bornée dans le cercle unité. Ark. Mat. Astr. Fys. 27A(1), 8 (1940)

Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 11, 429–439 (2017)

Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 41, 523–535 (2018)

Ebadian, A., Bulboacă, T., Cho N.E., Adegani, E.A.: Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, art.128 (2020)

Goodman, A.W.: Univalent functions, vol. II. Mariner Publishing Co., Inc, Tampa (1983)

Hayman, W.K.: On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 3(18), 77–94 (1968)

Janteng, A., Halim, S.A., Darus, M.: Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math. 7, 1–5 (2006)

Janteng, A., Halim, S.A., Darus, M.: Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 1, 619–625 (2007)

Jastrzȩbski, P., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim Y.J.: Hermitian Toeplitz determinants of the second and third-order for classes of close-to-star functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114, art.166 (2020)

Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97, 435–445 (2018)

Lee, S.K., Ravichandran, V., Supramaniam, S.: Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 281, 1–17 (2013)

Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 42, 767–780 (2019)

Kwon, O.S., Sim, Y.J.: The sharp bound of the Hankel determinant of the third kind for starlike functions with real coefficients. Mathematics 7, 721 (2019)

Lecko, A., Sim, Y.J., Śmiarowska, B.: The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 13, 2231–2238 (2019)

Obradović, M., Tuneski, N.: Some properties of the class $${\cal{U}}$$. Ann. Univ. Mariae Curie-Skłodowska Sect. A 73, 49–56 (2019)

Prokhorov, D.V., Szynal, J.: Inverse coefficients for $$(\alpha,\beta )$$-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 35, 125–143 (1981)

Zaprawa, P.: Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 14, art.19 (2017)