Thiomorpholine and morpholine oxidation by a cytochrome P450 in Mycobacterium aurum MO1. Evidence of the intermediates by in situ 1H NMR

Biodegradation - Tập 9 - Trang 433-442 - 1998
Bruno Combourieu1, Pascal Poupin2, Pascale Besse1, Martine Sancelme1, Henri Veschambre1, Nicole Truffaut2, Anne-Marie Delort1
1Laboratoire de Synthése, Electrosynthése et Etude de Systémes áIntérêt Biologique, UMR 6504 CNRS, Université Blaise Pascal, Aubiére Cedex, France
2Laboratoire de Génétique Microbienne, Université Technologique de Compiégne, Compiégne, France

Tóm tắt

Spectrophotometric assays of Mycobacterium aurum MO1 cells extracts gave evidence of a soluble cytochrome P450, involved in the degradative pathway of morpholine, a waste product from the chemical industry. In order to get further information, the kinetics of the biodegradation of the sulfur analogue thiomorpholine was monitored by using in situ nuclear magnetic resonance (NMR). This technique allowed the identification of two intermediates: the sulfoxide of thiomorpholine resulting from S-oxidation and thiodiglycolic acid owing to ring cleavage. The S-oxidation (S → SO) represents one of the well-known reactions catalyzed by cytochromes P450. The inhibitory effect of metyrapone, a cytochrome P450 inhibitor, on the thiomorpholine and morpholine degradative abilities of M. aurum MO1 confirmed the involvement of a cytochrome P450. These results and the decrease of the rate of formation of the first intermediate during the morpholine degradation, 2-(2-aminoethoxy) acetate, proved the key role of the cytochrome P450 in the early events of the biodegradation, i.e, in the C–-N bond cleavage.

Tài liệu tham khảo

Anon (1989) Final report on the safety assessment of morpholine. J. Amer. Coll. Toxicol. 8: 707–748 Asperger O, Wirkner K & Kleber HP (1990) Occurrence of cytochrome P-450 in Rhodococci. Biocatalysis 4: 59–65 Asperger O & Kleber HP (1991) Distribution and diversity of bacterial cytochrome P450. In: Ruckpaul K & Rein H (Ed) Frontiers in Biotransformation, Vol. 4 (pp 1–53) Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 Cech JS, Hartman P, Slosarek M & Chudoba J (1988) Isolation and identification of a morpholine-degrading bacterium. Appl. Environ. Microbiol. 54: 619–621 Combourieu B, Besse P, Sancelme M, Veschambre H, Delort AM, Poupin P & Truffaut N (1998) Morpholine degradation pathway of Mycobacterium aurum MO1: direct evidence of intermediates by in situ 1H nuclear magnetic resonance. Appl. Environ. Microbiol. 64: 153–158 Dmitrenko GN, Gvozdyak PI & Udod VM (1987) Selection of destructor microorganisms for heterocyclic xenobiotics. Khimiya i Teknologiya Vody 9: 442–445 Dmitrenko GN & Gvozdyak PI (1988) Destruction of morpholine by mycobacteria. In: Proceedings of Conference on Microbiological Methods for Protecting the Environment. Puschino, USSR: Centre for Biological Research Enzmann H, Zerban H, Kopp-Schnelder A, Loser E & Bannasch P (1995) Effects of low doses of N-nitrosomorpholine on the development of early stages of hepatocarcinogenesis. Carcinogenesis 16: 1513–1518 Fulco AJ (1991) P-450BM−3 and other inducible bacterial P-450 cytochromes: biochemistry and regulation. Annu. Rev. Pharmacol. Toxicol. 31: 177–203 Gallego MT, Brunet E & Ruano JLG (1993) Conformational analysis of methylthiazanes: the problem of the Me-C-Me gauche interaction. J. Org. Chem. 58: 3905–3911 Guengerich FP (1990a) Enzymatic oxidation of xenobiotic chemicals. Biochem. Mol. Biol. 25: 97–153 Guengerich FP (1990b) Chemical mechanisms of cytochromes P-450 catalysis. Asia Pacific J. Pharmacol. 5: 253–268 Horii M, Ishizaki T, Paik SY, Manome T & Murooka Y (1990) An operon containing the genes for cholesterol oxidase and a cytochrome P450 like protein from Streptomyces sp. J. Bacteriol. 172: 3644–3653 Jefcoate CR (1986) Cytochrome P-450 enzymes in sterol biosynthesis and metabolism. In: Ortiz de Montellano PR (Ed) Cytochromes P-450, Structure, Mechanism and Biochemistry. Plenum Press, New York (pp 387–428) Karlson U, Dwyer DF, Hooper SW, Moore ERB, Timmis KN & Eltis LD (1993) Two independently regulated cytochromes P-450 in a Rhodococcus rhodochrous strain that degrades 2-ethoxyethanol and 4-methoxybenzoate. J. Bacteriol. 175: 1467–1474 Knapp JS, Callely AG & Mainprize J (1982) The microbial degradation of morpholine. J. Appl. Bacteriol. 52: 5–13 Knapp JS & Brown VR (1988) Morpholine biodegradation. Int. Biode. 25: 299–306 Knapp JS, Emtiazi G, Yusoff S & Heron ST (1996) The utilization of morpholine as a sole nitrogen source by Gram-negative bacteria. Lett. Appl. Microbiol. 23: 334–338 Madesclaire M (1986) Synthesis of sulfoxides by oxidation of thioethers. Tetrahedron 42: 5459–5495 Madesclaire M (1988) Reduction of sulfoxides to thioethers. Tetrahedron 44: 6537–6580 Mazure N & Truffaut N (1994) Degradation of morpholine by Mycobacterium aurum MO1. Can. J. Microbiol. 40: 751–765 Mjos K (1978) Cyclic amines. In: Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 2, 3rd edn. (pp 298–308). Wiley Interscience, New York Nagy I, Schoofs G, Compernolle F, Proost P, Vanderleyden J & de Mot R (1995) Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J. Bacteriol. 177: 676–687 Oldham HG (1989) Interactions of sulphur-containing xenobiotics with cytochrome(s) P-450 and glucuronyl transferases. In: Danami LA (Ed) Sulfur Containing Drugs and Related Organic Compounds. Chemistry, Biochemistry and Toxicology, Vol. 2, Part B (pp 9–45). Ellis Horwood Limited, Chichester Omer CA, Lenstra R, Little PJ, Dean C, Tepperman JM, Leto KJ, Romesser JA & O'Keefe DP (1990) Genes for two herbicide-inducible cytochromes P-450 from Streptomyces griseolus. J. Bacteriol. 172: 3335–3345 Omura T & Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J. Biol. Chem. 239: 2379–2387 Ortiz de Montellano PR (1986) Cytochromes P-450, Structure, Mechanism and Biochemistry. Plenum Press, New York Peterson JA & Lu JY (1991) Bacterial cytochromes P450: isolation and identification. Methods Enzymol. 206: 612–620 Poupin P & Truffaut N (1996) Etude de la dégradation de la morpholine par Mycobacterium sp. RP1. Colloque de la Société Française de Microbiologie “Microbiologie industrielle et environnement” Avril 1996-Narbonne Poupin P, Truffaut N, Combourieu B, Besse P, Sancelme M, Veschambre H & Delort AM (1998) Degradation of morpholine by an environmental Mycobacterium strain involves a cytochrome P450. Appl. Environ. Microbiol. 64: 159–165 Renwick AG (1989) Sulphoxides and sulphones. In: Danami LA (Ed) Sulfur Containing Drugs and Related Organic Compounds. Chemistry, Biochemistry and Toxicology, Vol. 1, Part B (pp 133–153). Ellis Horwood Limited, Chichester Ruckpaul K & Rein H (1984) Cytochrome P-450, Akademie Verlag, Berlin Ruckpaul K & Rein H (1990) Frontiers in Biotransformation, Vol. 2. Akademie Verlag, Berlin Singer GM & Lijinsky W (1976) Naturally occuring nitrosable compounds. I. Secondary amines in foodstuffs. J. Agric. Food Chem. 24: 550–553 Swain A, Waterhouse KV, Venables WA, Callely AG & Lowe SE (1991) Biochemical studies of morpholine catabolism by an environmental Mycobacterium. Appl. Microbiol. Biotechnol. 35: 110–114 Testa B & Jenner P (1981) Inhibitors of cytochrome P450s and their mechanism of action. Drug Metab. Rev. 12: 1–117 Waterman MR, John ME & Simpson ER (1986) Regulation of synthesis and activity of cytochrome P-450 enzymes in physiological pathways. In: Ortiz de Montellano PR (Ed) Cytochromes P-450, Structure, Mechanism and Biochemistry (pp 345–386). Plenum Press, New York White GF, Russell NJ & Tidswell E (1996) Bacterial scission of ether bond. Microbiol. Rev. 60: 216–232 Wislocki PG, Miwa GT & Lu AYH (1980) Reactions catalyzed by the cytochrome P-450 system. In: Jakoby WB (Ed) Enzymatic Basis of Detoxification (pp 135–182) Ziegler DM (1988) Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab. Rev. 19: 1–32