Thin films of α-Fe2O3 nanoparticles using as nonmetallic SERS-active nanosensors for submicromolar detection

Frontiers of Chemistry in China - Tập 6 - Trang 206-212 - 2011
Xiaoqi Fu1,2, Shuang Wang2, Qian Zhao2, Tingshun Jiang2, Hengbo Yin2
1School of Material Science and Engineering, Jiangsu University, Zhenjiang, China
2School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China

Tóm tắt

A new kind of nonmetallic nanosensors based on surface-enhanced Raman spectroscopy (SERS) have been successfully prepared by the assembly of α-Fe2O3 nanoparticles (NPs) onto clean quartz surface via the cross-linker of hexamethylene diisocyanate (HDI). The resultant substrates have been characterized by electron micrographs, which show that the α-Fe2O3 NPs distribute on the modified surface uniformly with a monolayer or sub-monolayer structure. 4-mercaptopyridine (4-Mpy) and 2-mercaptobenzothiazole (2-MBT) molecules have been used as SERS probes to estimate the detection efficiency of the α-Fe2O3 thin films. The SERS experiments show that it is possible to record high quality SERS spectra from probe molecules on the α-Fe2O3 thin films at sub-micromolar ( < 10−6 mol/L) concentration. These results indicate that the highly ordered, uniformly roughed, highly sensitive and low-cost α-Fe2O3 thin films are excellent candidates for nonmetallic SERS-active nanosensors.

Tài liệu tham khảo

Wang, Y.; Li, D.; Li, P.; Wang, W.; Ren, W.; Dong, S.; Wang, E., J. Phys. Chem. C 2007, 111, 16833–16839 Sylvia, J. M.; Janni, J. A.; Klein, J. D.; Spencer, K. M., Anal. Chem. 2000, 72, 5834–5840 Yonzon, C. R.; Stuart, D. A.; Zhang, X.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P., Talanta 2005, 67, 438–448 Lucotti, A.; Pesapane, A.; Zerbi, G., Appl. Spectrosc. 2007, 61, 260–268 Wachter, E. A.; Storey, J. M. E.; Sharp, S. L.; Carron, K. T.; Jiang, Y., Appl. Spectrosc. 1995, 49, 193–199 Grabar, K. C.; Freeman, R. C.; Hommer, M. B.; Natan, M. J., Anal. Chem. 1995, 67, 735–743 Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys. 2004, 120, 15 Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Science 1995, 267, 1629–1632 Chumanov, G.; Sokolov, K.; Gregory, B. W.; Cotton, T. M., J. Phys. Chem. 1995, 99, 9466–9471 Ulman, A., Chem. Rev. 1996, 96, 1533–1554 Murty, K. V. G. K.; Venkataramanan, M.; Pradeep, T., Langmuir 1998, 14, 5446–5456 Felidj, N.; Truong, S. L.; Aubard, J.; Levi, G.; Krenn, J. R.; Hohenau, A.; Leitner, A.; Aussenegg, F. R., J. Chem. Phys. 2004, 120, 7141 Tantra, R.; Brown, R. J. C.; Milton, M. J. T.; Gohil, D., Appl. Spectrosc. 2008, 62, 992–1000 Wang, Y.; Gan, L.; Chen, H.; Dong, S.; Wang, J., J. Phys. Chem. B 2006, 110, 20418–20425 Zou, S.; Weaver, M. J., Anal. Chem. 1998, 70, 2387–2395 Brankovic, S. R.; Wang, J. X.; Adzic, R. R., Surf. Sci. 2001, 474, L173–L179 Wang, Z. L., Adv. Mater. (Deerfield Beach Fla.) 2003, 15, 432–436 Liu, A., Biosens. Bioelectron. 2008, 24, 167–177 Yamada, H.; Yamamoto, Y., Surf. Sci. 1983, 134, 71–90 Loo, B. H., J. Electroanal. Chem. 1982, 136, 209–213 Kudelski, A.; Grochala, W.; Janik-Czachor, M.; Bukowska, J.; Szummer, A.; Dolata, M., J. Raman Spectrosc. 1998, 29, 431–435 Fu, X.; Pan, Y.; Wang, X.; Lombardi, J. R., J. Chem. Phys. 2011, 134, 024707 Liu, Y. C.; Yu, C. C.; Wang, C. C.; Juang, L. C., Chem. Phys. Lett. 2006, 420, 245–249 Wang, X.; Chen, X.; Ma, X.; Zheng, H.; Ji, M.; Zhang, Z., Chem. Phys. Lett. 2004, 384, 391–393 Matijevic, E.; Scheiner, P., J. Colloid Interface Sci. 1978, 63, 509–524 Fu, X. Q.; Bei, F. L.; Wang, X.; Yang, X. J.; Lu, L. D., J. Raman Spectrosc. 2009, 40, 1290–1295 Su, X.; Zhang, J.; Sun, L.; Koo, T. W.; Chan, S.; Sundararajan, N.; Yamakawa, M.; Berlin, A. A., Nano Lett. 2005, 5, 49–54 Lee, S. J.; Morrill, A. R.; Moskovits, M., J. Am. Chem. Soc. 2006, 128, 2200–2201 Wang, Y.; Zhang, J.; Jia, H.; Li, M.; Zeng, J.; Yang, B.; Zhao, B.; Xu, W.; Lombardi, J. R., J. Phys. Chem. C 2008, 112, 996–1000 Lombardi, J. R.; Birke, R. L. J., PhysChemComm 2008, 112, 5605 Finkelstein-Shapiro, D.; Tarakeshwar, P.; Rajh, T.; Mujica, V., J. Phys. Chem. B 2010, 114, 14642–14645 Baldwin, J. A.; Vlckova, B.; Andrews, M. P.; Butler, I. S., Langmuir 1997, 13, 3744–3751 Lim, J. S.; Choi, H.; Lim, I. S.; Park, S. B.; Lee, Y. S.; Kim, S. K., J. Phys. Chem. A 2009, 113, 10410–10416 Lim, I. S.; Lim, J. S.; Lee, Y. S.; Kim, S. K., J. Chem. Phys. 2007, 126, 034306 Moskovits, M., Rev. Mod. Phys. 1985, 57, 783–826 Moskovits, M., J. Chem. Phys. 1982, 77, 4408 Kalkar, A. K.; Bhossekar, N. M.; Kshirsagar, S. T., Spectrochim. Acta [A] 1989, 45A, 635–641 Muniz-Miranda, M.; Neto, N.; Sbrana, G., J. Phys. Chem. 1988, 92, 954–959 Wang, Y. F.; Sun, Z. H.; Hu, H. L.; Jing, S. Y.; Zhao, B.; Xu, W. Q.; Zhao, C.; Lombardi, J. R., J. Raman Spectrosc. 2007, 38, 34–38 Park, H. K.; Yoon, J. K.; Kim, K., Langmuir 2006, 22, 1626–1629