Thickness changes in the corneal epithelium and Bowman’s layer after overnight wear of silicone hydrogel contact lenses

Springer Science and Business Media LLC - Tập 18 - Trang 1-7 - 2018
Fan Lu1, Aizhu Tao1, Weiwei Tao2, Xiran Zhuang1, Meixiao Shen1
1School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, China
2The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China

Tóm tắt

To investigate thickness changes in the corneal epithelium and Bowman’s layer after overnight silicone hydrogel contact lens (CL) wear by using ultra-high resolution optical coherence tomography (UHROCT). Eleven subjects without CL wearing history were recruited for this study. An UHROCT was used to measure the thickness of the epithelium (ET), Bowman’s layer (BT), stroma (ST), and total cornea (CCT) at the center of both eyes. A silicone hydrogel CL was inserted in the right eye of each subject, and the fellow non-CL wearing left eye served as the control. The lens was inserted at 9:30 pm and removed at 8:00 am the next morning. The subjects were evaluated at 9:00 pm (baseline), 9:30 pm (lens insertion), 10:00 pm (before sleep), 7:00 am (waking), 7:30 am, and 8:00 am (lens removal). Compared to the lens insertion level, the ET of the lens-wearing eye increased by 5.73% at eye opening (P = 0.001). The ET of the non-CL wearing eye and the BT in both eyes did not change after overnight CL wear. Compared to baseline, the CCT of the lens-wearing eye increased by 2.87% upon waking (P = 0.003) and recovered 30 min later (P = 0.555). In contrast, compared to baseline, the CCT of the non-CL wearing eye did not increase upon waking (P = 0.105). By using UHROCT, we found that overnight CL wear induced different swelling responses in the various sublayers of the cornea. Retrospectively registered. Registration number: ChiCTR1800015115 . Registered 07 March 2018.

Tài liệu tham khảo

Mishima S. Clinical investigations on the corneal endothelium XXXVIII Edward Jackson memorial lecture. Am J Ophthalmol. 1992;93:1–29. Steffen RB, Schnider CM. The impact of silicone hydrogel materials on overnight corneal swelling. Eye Contact Lens. 2007;33(3):115–20. Ladage PM, Jester JV, Petroll WM, Bergmanson JP, Cavanagh HD. Role of oxygen in corneal epithelial homeostasis during extended contact lens wear. Eye Contact Lens. 2003;29:S2–6. Wang J, Fonn D, Simpson TL, Jones L. The measurement of corneal epithelial thickness in response to hypoxia using optical coherence tomography. Am J Ophthalmol. 2002;133:315–9. Holden BA, Mertz GW. Critical oxygen levels to avoid corneal edema for daily and extended wear contact lenses. Invest Ophthalmol Vis Sci. 1984;25:1161–7. Bonanno JA, Stickel T, Nguyen T, Biehl T, Carter D, Benjamin WJ, et al. Estimation of human corneal oxygen consumption by noninvasive measurement of tear oxygen tension while wearing hydrogel lenses. Invest Ophthalmol. Vis. Sci. 2002;43:371–6. Schein OD, Glynn RJ, Poggio EC, Seddon JM, Kenyon KR. The relative risk of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses. A case-control study. N Engl J Med. 1989;321:773–8. Lim C, Carnt NA, Farook M, Lam J, Tan DT, Mehta JS, et al. Risk factors for contact lens-related microbial keratitis in Singapore. Eye. 2016;30(3):447–55. Guillon M. Are silicone hydrogel contact lenses more comfortable than hydrogel contact lenses? Eye Contact Lens. 2013;39:86–92. Dillehay SM, Miller MB. Performance of lotrafilcon B silicne hydrogel contact lenses in experienced low-Dk/t daily lens wearers. Eye Contact Lens. 2007;33:272–7. Long B, Schweizer H, Bleshoy H, Zeri F. Expanding your use of silicone hydrogel contact lenses: using lotrafilcon a for daily wear. Eye Contact Lens. 2009;35:59–64. Kuerten D, Plange N, Koch EC, Koutsonas A, Walter P, Fuest M. Central corneal thickness determination in corneal edema using ultrasound pachymetry, a Scheimpflug camera, and anterior segment OCT. Graefes Arch Clin Exp Ophthalmol. 2015;253(7):1105–9. Fonn D, Toit R, Simpson TL, Vega JA, Situ P, Chalmers RL. Sympathetic swelling response of the control eye to soft lenses in the other eye. Invest Ophthalmol Vis Sci. 1999;40:3116–21. Wang J, Fonn D, Simpson TL. Topographical thickness of the epithelium and total cornea after hydrogel and PMMA contact lens wear with eye closure. Invest Ophthalmol Vis Sci. 2003;44:1070–4. Ge L, Yuan Y, Shen M, Tao A, Wang J, Lu F. The role of axial resolution of optical coherence tomography on the measurement of corneal and epithelial thicknesses. Invest Ophthalmol Vis Sci. 2013;54:746–55. Hutchings N, Simpson TL, Hyun C, Moayed AA, Hariri S, Sorbara L, et al. Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4579–84. Tao A, Wang J, Chen Q, Shen M, Lu F, Dubow SR, et al. Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:3901–7. Ge L, Shen M, Tao A, Wang J, Dou G, Lu F. Automatic segmentation of the central epithelium imaged with three optical coherence tomography devices. Eye Contact Lens. 2012;38:150–7. Dumbleton KA, Woods CA, Jones LW, Fonn D. Comfort and adaptation to silicone hydrogel lenses for daily wear. Eye Contact Lens. 2008;34:215–23. Erdfelder E, Faul F, Buchner A. Gpower: a general power analysis program. Behav Res Methods Instrum Comput. 1996;28:1–11. Golding TR, Bruce AS, Gaterell LL, Little SA, Macnamara J. Soft lens movement: effect of blink rate on lens setting. Acta Ophthalmol Scand. 1995;73:506–11. Brennan NA, Lindsay RG, McCraw K, Young L, Bruce AS, Golding TR. Soft lens movement: temporal characteristics. Optom Vis Sci. 1994;71:359–63. Shen M, Cui L, Riley C, Wang MR, Wang J. Characterizaton of soft contact lens edge fitting using ultra-high resolution and ultra-long scan depth optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:4091–7. Hall LA, Young G, Wolffsohn JS, Reliy C. The influence of corneo-scleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6. Tao A, Shao Y, Jiang H, Ye Y, Lu F, Shen M, et al. Entire thickness profiles of the epithelium and contact lens in vivo imaged with high-speed and high-resolution optical coherence tomography. Eye Contact Lens. 2013;39:329–34. Shen M, Wang MR, Wang J, Yuan Y, Chen F. Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography. Eye Contact Lens. 2010;36:73–6. Wang J, Thomas J, Cox I, Rollins A. Noncontact measurements of central corneal epithelial and flap thickness after laser in situ Keratomileusis. Invest Ophthalmol Vis Sci. 2004;45:1812–6. Moezzi AM, Fonn D, Simpson TL. Overnight corneal swelling with silicone hydrogel contact lenses with high oxygen transmissibility. Eye Contact Lens. 2006;32:277–80. Stapleton F, Lakshmi KR, Kumar S, Sweenev DF, Rao GN, Holden BA. Overnight corneal swelling in symptomatic and asymptomatic contact lens wearers. CLAO J. 1998;24:169–74. Dawson DG, Grossniklaus HE, McCarey BE, Edelhauser HF. Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman’s keratomileusis? J Refract Surg. 2008;24:S90–6. Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52:6801–6.