Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain

Nature Nanotechnology - Tập 6 Số 8 - Trang 491-495 - 2011
S A Harrington1, Junyi Zhai2, S. Denev3, Venkatraman Gopalan3, Haiyan Wang4, Zhenxing Bi4, Simon A. T. Redfern5, Seung‐Hyub Baek6, Chung Wung Bark6, Chang‐Beom Eom6, Q. X. Jia2, M. E. Vickers1, Judith L. MacManus‐Driscoll1
1Department of Materials Science, University of Cambridge, Cambridge, UK
2Center for Integrated Nanotechnologies, MS K771, Los Alamos National Laboratory, Los Alamos, USA
3Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
4Department of Electrical and Computer Engineering, Texas A&M University, USA
5Department of Earth Sciences, University of Cambridge, Cambridge, UK
6Department of Materials Science and Engineering, University of Wisconsin–Madison, Madison, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).

Maeder, M. D., Damjanovic, D. & Setter, N. Lead free piezoelectric materials. J. Electroceramics 13, 385–392 (2004).

Takenaka, T. & Nagata, H. Current status and prospects of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 25, 2693–2700 (2005).

Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004).

Wang, H. & Ren, M. Synthesis and ferroelectric properties of SrBi2Ta2O9/Bi4Ti3O12/p-Si multilayer thin films by sol–gel. J. Mater. Sci. Mater. Electron. 17, 165–169 (2006).

Qi, X. D., Dho, J., Tomov, R., Blamire, M. G. & MacManus-Driscoll, J. L. Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3 . Appl. Phys. Lett. 86, 062903 (2005).

Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y. & Matumoto, K. Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceram. 19, 259–265 (2007).

Gomah-Pettry, J. R., Saïd, S., Marchet, P. & Mercurio, J. P. Sodium-bismuth titanate based lead-free ferroelectric materials. J. Eur. Ceram. Soc. 24, 1165–1169 (2004).

Wimbush, S. C. et al. Interfacial strain-induced oxygen disorder as the cause of enhanced critical current density in superconducting thin films. Adv. Funct. Mater. 19, 835–841 (2009).

Nagarajan, V. et al. Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

Moshnyaga, V. et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nature Mater. 2, 247–252 (2003).

Macmanus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x+BaZrO3 . Nature Mater. 3, 439–443 (2004).

Aggarwal, S. et al. Spontaneous ordering of oxide nanostructures. Science. 287, 2235–2237 (2000).

Zavaliche, F. et al. Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793–1796 (2005).

Fouchet, A. et al. Spontaneous ordering, strain control, and multifunctionality in vertical nancomposite heteroepitaxial films. IEEE Trans. Ultrason. Ferr. 56, 1534–1538 (2009).

MacManus-Driscoll, J. L. et al. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nature Mater. 7, 314–320 (2008).

Yang, H. et al. Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794–3798 (2009).

Munro, R. G. Elastic Moduli Data for Polycrystalline Ceramics 6853 (NISTIR, 2002).

IEEE. Proceedings of the 5th International Symposium on Micro Machine and Human Science 75 (Nagoya, 1994).

MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035–2045 (2010).

Zheng, H. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 303, 661–663 (2004).

Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

Megaw, H. D. Origin of ferroelectricity in barium titanate and other perovskite-type crystals. Acta Cryst. 5, 739–749 (1952).

Kuwabara, M., Goda, K. & Oshima, K. Coexistence of normal and diffuse ferroelectric-paraelectric phase transitions in (Pb,La)TiO3 ceramics. Phys. Rev. B. 42, 10012–10015 (1990).

Shintani, Y. & Tada, O. Preparation of thin BaTiO3 films by DC diode sputtering. J. Appl. Phys. 41, 2376–2380 (1970).

Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. & Bando, Y. Preparation of ferroelectric BaTiO3 thin-films by activated reactive evaporation. Appl. Phys. Lett. 56, 527–529 (1990).

Yoneda, Y. et al. Ferroelectric phase-transition in BaTiO3 films. J. Phys. Soc. Jpn 62, 1840–1843 (1993).

Nose, T., Kim, H. T. & Uwe, H. Dielectric property of epitaxial-films of BaTiO3 synthesized by laser-ablation. Jpn J. Appl. Phys. 1 33, 5259–5261 (1994).

Abe, K., Komatsu, S., Yanase, N., Sano, K. & Kawakubo, T. Asymmetric ferroelectricity and anomalous current conduction in heteroepitaxial BaTiO3 films. Jpn. J. Appl. Phys. 36, 5846–5853 (1997).

Jaffe, B., Cook, W. R. Jr & Jaffe, H. Piezoelectric Ceramics (Academic, 1971).

Hong, J. W. & Fang, D. N. Size-dependent ferroelectric behaviours of BaTiO3 nanowires. Appl. Phys. Lett. 92, 012906 (2008).

Megaw, H. D. Crystal structure of barium titanate. Nature 155, 484–485 (1945).