Thiazolidinediones and cardiovascular disease

Current Atherosclerosis Reports - Tập 7 - Trang 115-120 - 2005
Robert Chilton1, Elaine Chiquette1
1Catheterization Laboratory, Audie Murphy VA Hospital/University of Texas Health Science Center at San Antonio, San Antonio, USA

Tóm tắt

Thiazolidinediones hold promise for reducing cardiovascular events and human atherosclerosis. Similar to statins and angiotensin-converting enzyme inhibitors, peroxisome proliferator activated receptor γ (PPARγ) exerts anti-inflammatory and antiatherosclerotic actions in the vessel wall. A number of clinical trials in subjects with or without diabetes have shown that thiazolidinedione therapy can reduce in-stent restenosis and delay progression of atherosclerosis measured by carotid artery ultrasound. PPARγ directly promotes expression of ATP-binding cassette transporter GI, mediating cellular cholesterol efflux to high-density lipoproteins from macrophages, which may further explain the potential cardiovascular benefit of this class. Whether the benefits observed in animal models will translate in clinical practice is being evaluated in several large, randomized controlled trials.

Tài liệu tham khảo

Dubois M, Pattou F, Kerr-Conte J, et al.: Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000, 43:1165–1169. Chinetti G, Griglio S, Antonucci M, et al.: Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998, 273:25573–25580. Ricote M, Huang J, Fajas L, et al.: Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998, 95:7614–7619. Marx N, Sukhova G, Murphy C, et al.: Macrophages in human atheroma contain PPARgamma: differentiation-dependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998,153:17–23. Clark RB, Bishop-Bailey D, Estrada-Hernandez T, et al.: The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000, 164:1364–1371. Padilla J, Kaur K, Harris SG, Phipps RP: PPAR-gamma-mediated regulation of normal and malignant B lineage cells. Ann N Y Acad Sci 2000, 905:97–109. Delerive P, Martin-Nizard F, Chinetti G, et al.: Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circulation 1999, 85:394–402. Marx N, Sukhova GK, Collins T, et al.: PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999, 99:3125–3131. Marx N, Bourcier T, Sukhova GK, et al.: PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol 1999, 19:546–551. Law RE, Goetze S, Xi XP, et al.: Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 2000, 101:1311–1318. Marx N, Schonbeck U, Lazar MA, et al.: Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circulation 1998, 83:1097–1103. Chinetti G, Gbaguidi FG, Griglio S, et al.: CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 2000, 101:2411–2417. Martens FM, Visseren FL, Lemay J, et al.: Metabolic and additional vascular effects of thiazolidinediones. Drugs 2002, 62:1463–1480. Ricote M, Li AC, Willson TM, et al.: The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998, 391:79–82. Chinetti G, Fruchart JC, Staels B: Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res 2000, 49:497–505. Pasceri V, Wu HD, Willerson JT, Yeh ET: Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-gamma activators. Circulation 2000, 101:235–238. de Dios ST, Bruemmer D, Dilley RJ, et al.: Inhibitory activity of clinical thiazolidinedione peroxisome proliferator activating receptor-gamma ligands toward internal mammary artery, radial artery, and saphenous vein smooth muscle cell proliferation. Circulation 2003, 107:2548–2550. Bruemmer D, Berger JP, Liu J, et al.: A non-thiazolidinedione partial peroxisome proliferator-activated receptor gamma ligand inhibits vascular smooth muscle cell growth. Eur J Pharmacol 2003, 466:225–234. Wakino S, Kintscher U, Kim S, et al.: Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1→ S transition in vascular smooth muscle cells. J Biol Chem 2000, 275:22435–22441. Jiang C, Ting AT, Seed B: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature 1998, 391:82–86. Moore KJ, Rosen ED, Fitzgerald ML, et al.: The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001, 7:41–47. Ricote M, Huang JT, Welch JS, Glass CK: The peroxisome proliferator-activated receptor (PPARgamma) as a regulator of monocyte/macrophage function. J Leukocyte Biol 1999, 66:733–739. Mehta JL, Hu B, Chen J, Li D: Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol 2003, 23:2203–2208. Ishibashi M, Egashira K, Hiasa K, et al.: Antiinflammatory and antiarteriosclerotic effects of pioglitazone. Hypertension 2002, 40:687–693. Li D, Saldeen T, Romeo F, Mehta JL: Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation 2000, 102:1970–1976. Li AC, Binder CJ, Gutierrez A, et al.: Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 2004, 114:1564–1576. Wang N, Lan D, Chen W, et al.: ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A 2004, 101:9774–9779. Libby P, Ridker PM: Novel inflammatory markers of coronary risk: theory versus practice. Circulation 1999, 100:1148–1150. Plutzky J: Inflammatory pathways in atherosclerosis and acute coronary syndromes. Am J Cardiol 2001, 88:10K-15K. Ridker PM, Rifai N, Rose L, et al.: Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002, 347:1557–1565. Ridker PM, Glynn RJ, Hennekens CH: C-reactive protein adds to the predictive value of total and HDL cholesterol in determining risk of first myocardial infarction. Circulation 1998, 97:2007–2011. Barzilay JI, Abraham L, Heckbert SR, et al.: The relation of markers of inflammation to the development of glucose disorders in the elderly: the Cardiovascular Health Study. Diabetes 2001, 50:2384–2389. Haffner SM, Greenberg AS, Weston WM, et al.: Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 2002, 106:679–684. Mohanty P, Aljada A, Ghanim H, et al.: Evidence for a potent antiinflammatory effect of rosiglitazone. J Clin Endocrinol Metab 2004, 89:2728–2735. Festa A, D’Agostino R Jr, Howard G, et al.: Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000, 102:42–47. Ghanim H, Garg R, Aljada A, et al.: Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential antiatherosclerotic effect in the obese. J Clin Endocrinol Metab 2001, 86:1306–1312. Aljada A, Garg R, Ghanim H, et al.: Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an antiinflammatory action? J Clin Endocrinol Metab 2001, 86:3250–3256. Bots ML, Hoes AW, Koudstaal PJ, et al.: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 1997, 96:1432–1437. O’Leary DH, Polak JF, Kronmal RA, et al.: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 1999, 340:14–22. Touboul PJ, Elbaz A, Koller C, et al.: Common carotid artery intima-media thickness and brain infarction: the Etude du Profil Genetique de l’Infarctus Cerebral (GENIC) case-control study. The GENIC Investigators. Circulation 2000, 102:313–318. Salonen R, Salonen JT: Determinants of carotid intimamedia thickness: a population-based ultrasonography study in eastern Finnish men. J Intern Med 1991, 229:225–231. Folsom AR, Wu KK, Shahar E, Davis CE: Association of hemostatic variables with prevalent cardiovascular disease and asymptomatic carotid artery atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Arterioscler Thromb 1993, 13:1829–1836. Allan PL, Mowbray PI, Lee AJ, Fowkes FG: Relationship between carotid intima-media thickness and symptomatic and asymptomatic peripheral arterial disease. The Edinburgh Artery Study. Stroke 1997, 28:348–353. Bots ML, Hofman A, Grobbee DE: Common carotid intima-media thickness and lower extremity arterial atherosclerosis. The Rotterdam Study. Arterioscler Thromb 1994,14:1885–1891. Salonen R, Nyyssonen K, Porkkala E, et al.: Kuopio Atherosclerosis Prevention Study (KAPS). A population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries. Circulation 1995, 92:1758–1764. Blankenhorn DH, Johnson RL, Nessim SA, et al.: The Cholesterol Lowering Atherosclerosis Study (CLAS): design, methods, and baseline results. Control Clin Trials 1987, 8:356–387. MacMahon S, Sharpe N, Gamble G, et al.: Effects of lowering average of below-average cholesterol levels on the progression of carotid atherosclerosis: results of the LIPID Atherosclerosis Substudy. LIPID Trial Research Group. Circulation 1998, 97:1784–1790. Byington RP, Furberg CD, Crouse JR 3rd, et al.: Pravastatin, Lipids, and Atherosclerosis in the Carotid Arteries (PLAC-II). Am J Cardiol 1995, 76:54C-59C. Furberg CD, Adams HP Jr, Applegate WB, et al.: Effect of lovastatin on early carotid atherosclerosis and cardiovascular events. Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Circulation 1994, 90:1679–1687. Sidhu JS, Kaposzta Z, Markus HS, Kaski JC: Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus. Arterioscler Thromb Vasc Biol 2004, 24:930–934. Koshiyama H, Shimono D, Kuwamura N, et al.: Rapid communication inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001, 86:3452–3456. Brooks MM, Jones RH, Bach RG, et al.: Predictors of mortality and mortality from cardiac causes in the bypass angioplasty revascularization investigation (BARI) randomized trial and registry. For the BARI Investigators. Circulation 2000, 101:2682–2689. Schwartz SM: Perspectives series: cell adhesion in vascular biology. Smooth muscle migration in atherosclerosis and restenosis. J Clin Invest 1997, 99:2814–2816. Osman A, Otero J, Brizolara A, et al.: Effect of rosiglitazone on restenosis after coronary stenting in patients with type 2 diabetes. Am Heart J 2004, 147:e23. Choi D, Kim SK, Choi SH, et al.: Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004, 27:2654–2660. Takagi T, Yamamuro A, Tamita K, et al.: Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003, 146:E5. Sabate M, Jimenez-Quevedo P, Angiolillo DJ, et al.: Diabetes and sirolimus eluting stent trial: The Diabetes Trial. http://www.tctmd.com. Accessed on October 24, 2004. Viberti G, Kahn SE, Greene DA, et al.: A diabetes outcome progression trial (ADOPT): an international multicenter study of the comparative efficacy of rosiglitazone, glyburide, and metformin in recently diagnosed type 2 diabetes. Diabetes Care 2002, 25:1737–1743. Charbonnel B, Dormandy J, Erdmann E, et al.: The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care 2004, 27:1647–1653.