Theta Functions on Noncommutative Tori

Letters in Mathematical Physics - Tập 58 - Trang 81-90 - 2001
Albert Schwarz1
1Department of Mathematics, University of California, Davis, U.S.A.

Tóm tắt

Ordinary theta functions can be considered as holomorphic sections of line bundles over tori. We show that one can define generalized theta functions as holomorphic elements of projective modules over noncommutative tori (theta vectors). The theory of these new objects is not only more general, but also much simpler than the theory of ordinary theta-functions. It seems that the theory of theta vectors should be closely related to Manin's theory of quantized theta functions, but we don't analyze this relation.

Tài liệu tham khảo

Connes, A.: C*-algèbres et géometrie différentielle, C.R. Acad. Sci. Paris 290 (1980), 599-604. Connes, A. and Rieffel, M.: Yang Mills for noncommutative two-tori, Contemp. Math. 66 (1987), 237–266. Rieffel, M.: Projective modules over higher-dimensional noncommutative tori, Canad. J. Math. 40(2) (1988), 257–338. Rieffel, M. and Schwarz, A.: Morita equivalence of multidimensional noncommutative tori, Internat. J. Math 10(2) (1999), 289–299 Schwarz, A.: Gauge theories on noncommutative spaces, ICMP lecture, hep-th/0011261. Schwarz, A.: Morita equivalence and duality, Nuclear Phys. B 534 (1998), 720–738. Konechny, A. and Schwarz, A.: BPS states on noncommutative tori and duality, Nuclear Phys. B 550 (1999), 561–584. Konechny, A. and Schwarz, A.:Moduli spaces of maximally supersymmetric solutions on noncommutative tori and noncommutative orbifolds, J. High Energy Phys 09 (2000), 1–23. Mumford, D.: Tata Lectures on Theta I, Birkhäuser, Basel (1983). Mumford, D.: Tata Lectures on Theta III (with M. Nori and P. Norman), Birkhäuser, Basel (1991). Manin, Yu.: Quantized theta functions, In: Common Trends inMathematics andQuantum Field Theories (Kyoto, 1990), Prog. Theoret. Phys. Supplement 102 (1990), 219–228. Manin, Yu.: Mirror symmetry and quantization of abelian varieties, Preprint math. AG/0005143. Manin, Yu.: Theta functions, quantum tori and Heisenberg groups, Lett. Math. Phys. 56(3) (2001), math.AG/0011197 Soibelman, Ya.: Quantum tori, mirror symmetry and deformation theory, Lett. Math. Phys. 56(3) (2001), math.QA/0011162 Schwarz, A.: Noncommutative instantons: a new approach, Commun. Math. Phys. 221 (2001), 433–450, hep-th/0102182.