Thermoplasmonic Scaffold Design for the Modulation of Neural Activity in Three-Dimensional Neuronal Cultures

BioChip Journal - Tập 16 - Trang 451-462 - 2022
Andrea Andolfi1, Hyunsoo Jang2,3, Sergio Martinoia1, Yoonkey Nam2
1Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova, Italy
2Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
3Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea

Tóm tắt

Neuromodulation has made great strides in recent years, but in vitro studies have been limited to two-dimensional cell cultures, far from in vivo conditions. In this study, we realized a novel thermoplasmonic platform for modulating the neural activity of three-dimensional cell cultures, providing a new tool to bring in vitro neuromodulation studies into a three-dimensional environment. The photosensitive scaffold, obtained by covering soda-lime glass microbeads (diameter about 40 µm) with gold nanorods, integrates microbeads’ structural properties, intended to support the development of the neural network in three dimensions, with the photothermal properties of plasmonic nanoparticles. We demonstrate its efficiency in providing support for the construction of three-dimensional cell culture and how, under Near-infrared laser irradiation, their photothermal effect can precisely and non-invasively modulate the activity of the neural network. Our platform is expected to be a useful tool for improving neural network studies to better understand complex brain functions and neural disorders.

Tài liệu tham khảo

Wells, J., Kao, C., Jansen, E.D., Konrad, P., Mahadevan-Jansen, A.: Application of infrared light for in vivo neural stimulation. J. Biomed. Opt. 10, 64003 (2005). https://doi.org/10.1117/1.2121772 Bernstein, J.G., Garrity, P.A., Boyden, E.S.: Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Curr. Opin. Neurobiol. 22, 61–71 (2012). https://doi.org/10.1016/j.conb.2011.10.023 Chen, R., Romero, G., Christiansen, M.G., Mohr, A., Anikeeva, P.: Wireless magnetothermal deep brain stimulation. Science 347(2015), 1477–1480 (1979). https://doi.org/10.1126/science.1261821 Shapiro, M.G., Homma, K., Villarreal, S., Richter, C.P., Bezanilla, F.: Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 736 (2012). https://doi.org/10.1038/ncomms1742 Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K.: Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. (2005). https://doi.org/10.1038/nn1525 Zhang, F., Wang, L.P., Brauner, M., Liewald, J.F., Kay, K., Watzke, N., Wood, P.G., Bamberg, E., Nagel, G., Gottschalk, A., Deisseroth, K.: Multimodal fast optical interrogation of neural circuitry. Nature (2007). https://doi.org/10.1038/nature05744 Williams, J.C., Denison, T.: From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. (2013). https://doi.org/10.1126/scitranslmed.3003100 Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A.: The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012). https://doi.org/10.1039/C1CS15237H Carvalho-de-Souza, J.L., Treger, J.S., Dang, B., Kent, S.B.H., Pepperberg, D.R., Bezanilla, F.: Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015). https://doi.org/10.1016/j.neuron.2015.02.033 Eom, K., Kim, J., Choi, J.M., Kang, T., Chang, J.W., Byun, K.M., Jun, S.B., Kim, S.J.: Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10, 3853–3857 (2014). https://doi.org/10.1002/smll.201400599 Yoo, S., Hong, S., Choi, Y., Park, J.-H., Nam, Y.: Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014). https://doi.org/10.1021/nn5020775 Yoo, S., Kim, R., Park, J.-H., Nam, Y.: Electro-optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016). https://doi.org/10.1021/acsnano.5b07747 Jung, H., Kang, H., Nam, Y.: Digital micromirror based near-infrared illumination system for plasmonic photothermal neuromodulation. Biomed. Opt. Express 8, 2866 (2017). https://doi.org/10.1364/boe.8.002866 Yoo, S., Park, J.-H., Nam, Y.: Single-cell photothermal neuromodulation for functional mapping of neural networks. ACS Nano 13, 544–551 (2019). https://doi.org/10.1021/acsnano.8b07277 Carvalho-de-Souza, J.L., Pinto, B.I., Pepperberg, D.R., Bezanilla, F.: Optocapacitive generation of action potentials by microsecond laser pulses of nanojoule energy. Biophys. J. 114, 283–288 (2018). https://doi.org/10.1016/j.bpj.2017.11.018 Cukierman, E.: Taking cell-matrix adhesions to the third dimension. Science 294(2001), 1708–1712 (1979). https://doi.org/10.1126/science.1064829 Frega, M., Tedesco, M., Massobrio, P., Pesce, M., Martinoia, S.: Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Sci. Rep. (2014). https://doi.org/10.1038/srep05489 Birgersdotter, A., Sandberg, R., Ernberg, I.: Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems. Semin. Cancer Biol. (2005). https://doi.org/10.1016/j.semcancer.2005.06.009 Behravesh, E., Emami, K., Wu, H., Gonda, S.: Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. Adv. Space Res. 35, 260–267 (2005). https://doi.org/10.1016/j.asr.2005.01.066 Pedersen, J.A., Swartz, M.A.: Mechanobiology in the third dimension. Ann. Biomed. Eng. 33, 1469–1490 (2005). https://doi.org/10.1007/s10439-005-8159-4 Smalley, K.S., Lioni, M., Herlyn, M.: Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim. 42, 242–247 (2006). https://doi.org/10.1290/0604027.1 Tedesco, M., Frega, M., Martinoia, S., Pesce, M., Massobrio, P.: Interfacing 3D engineered neuronal cultures to micro-electrode arrays: an innovative in vitro experimental model. J. Vis. Exp. (2015). https://doi.org/10.3791/53080 Kim, D., Kang, H., Nam, Y.: Compact 256-channel multi-well microelectrode array system for in vitro neuropharmacology test. Lab Chip (2020). https://doi.org/10.1039/D0LC00384K Kim, R., Nam, Y.: Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. J. Neurosci. Methods (2019). https://doi.org/10.1016/j.jneumeth.2019.108369 Pautot, S., Wyart, C., Isacoff, E.Y.: Colloid-guided assembly of oriented 3D neuronal networks. Nat. Methods 5, 735–740 (2008). https://doi.org/10.1038/nmeth.1236 Tabor, C., van Haute, D., El-Sayed, M.A.: Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano 3, 3670–3678 (2009). https://doi.org/10.1021/nn900779f Jokerst, J.V., Lobovkina, T., Zare, R.N., Gambhir, S.S.: Nanoparticle PEGylation for imaging and therapy. Nanomedicine 6, 715–728 (2011). https://doi.org/10.2217/nnm.11.19 Haro-González, P., Sevilla, P.R., Sanz-Rodríguez, F., Rodríguez, E.M., Bogdan, N., Capobianco, J.A., Dholakia, K., Jaque, D.: Gold nanorod assisted intracellular optical manipulation of silica microspheres. Opt. Express 22, 19735 (2014). https://doi.org/10.1364/OE.22.019735 Hong, N., Nam, Y.: Thermoplasmonic neural chip platform for in situ manipulation of neuronal connections in vitro. Nat. Commun. (2020). https://doi.org/10.1038/s41467-020-20060-z