Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tính chất nhiệt lý của hệ thống ethyl levulinate và n-alkanol
Tóm tắt
Một số tính chất nhiệt lý như mật độ, tốc độ âm thanh, hệ số khúc xạ và dòng nhiệt của các hệ nhị phân ethyl levulinate và n-alkanol (methanol, ethanol, 1-propanol và 1-butanol) được báo cáo trong khoảng nhiệt độ T = (283.15–313.15) K và ở áp suất p = 100 kPa. Từ dữ liệu thực nghiệm này, các tính chất vượt mức đã được tính toán và tương quan với thành phần bằng một phương trình Redlich–Kister đã được sửa đổi. Thể tích mol vượt mức có giá trị âm đối với các rượu ngắn chuỗi và có giá trị dương đối với 1-propanol và 1-butanol. Hệ số khúc xạ vượt mức thể hiện hành vi ngược lại. Tính đàn hồi vượt mức về mặt isentropic là âm còn enthalpy mol vượt mức thì dương. Phương trình trạng thái lý thuyết chuỗi bị nhiễu liên hợp với thống kê (PC-SAFT EoS) đã được áp dụng thành công để tương quan với mật độ của các hỗn hợp, và đã thu được kết quả định tính tốt trong việc tính toán enthalpy mol vượt mức. Hơn nữa, lý thuyết hệ số va chạm của Schaaff (SCFT) và quy tắc trộn Laplace đã được kết hợp với PC-SAFT để dự đoán tốc độ âm thanh và hệ số khúc xạ tương ứng.
Từ khóa
#tính chất nhiệt lý #ethyl levulinate #n-alkanol #mật độ #tốc độ âm thanh #khúc xạ #Dữ liệu thực nghiệm #Phương trình Redlich-Kister #PC-SAFTTài liệu tham khảo
Malucelli LC, Guiotoku M, Maia CMBF, Carvalho Filho MAS. Optimal blending to improve the combustibility of biofuels: a waste-to-energy approach. J Therm Anal Calorim. 2022;147:5771–7. https://doi.org/10.1007/s10973-021-10955-4.
Darolia PJ, Malik S, Garg S, Chadha R, Sharma VK. Thermodynamic properties of liquid mixtures containing cyclic amines and isomeric picolines: excess molar volumes and excess isentropic compressibilities and excess heat capacities. J Therm Anal Calorim. 2022;147:3331–64. https://doi.org/10.1007/s10973-020-10507-2.
Abidi R, Artal M, Hichri M, Lafuente C. Experimental and modelled thermophysical behaviour of methyl levulinate(methyl 4-oxopentanoate) and n-alkanol systems. J Mol Liq. 2021;339: 116739. https://doi.org/10.1016/j.molliq.2021.116739.
Abidi R, Hichri M, Lafuente C, Hernández A. Surface tensions for binary mixtures of alkyl levulinate + alkanol: measurement and modeling. Int J Thermophys. 2023;44:33. https://doi.org/10.1007/s10765-022-03142-6.
Ramli NAS, Abdullah F. Study of density, surface tension, and refractive index of binary mixtures containing alkyl levulinate and n-alcohol from 298.15 to 323.15 K. J Chem Eng Data. 2021;66:1856–76. https://doi.org/10.1021/acs.jced.0c00694.
Majstorović DM, Petrović PI, Kijevčanin ML, Živković EM. Thermodynamic study of triacetin or ethyl levulinate and alcohol binary mixtures. J Chem Thermodyn. 2023;180: 107004. https://doi.org/10.1016/j.jct.2023.107004.
Gross J, Sadowski G. Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind Eng Chem Res. 2001;40:1244–60. https://doi.org/10.1021/ie0003887.
Gross J, Sadowski G. Application of the perturbed-chain SAFT equation of state to associating systems. Ind Eng Chem Res. 2002;41:5510–5. https://doi.org/10.1021/ie010954d.
Schaaffs W. The problem of a theoretical calculation of the velocity of sound for binary liquid mixtures. Acustica. 1975;33:272–6.
Laplace PS. Traité de mécanique celeste. Typ Crapelet. 1821;4:32.
Lafuente C, Artigas H, López MC, Royo FM, Urieta JS. Excess molar enthalpies for isomeric chlorobutanes with isomeric butanols. Phys Chem Liq. 2001;39:665–73. https://doi.org/10.1080/00319100108031683.
Monk P, Wadsö I. A flow micro reaction calorimeter. Acta Chem Scand. 1968;22:1842–52. https://doi.org/10.3891/acta.chem.scand.22-1842.
Marsh KN. Recommended reference materials for the realization of physico-chemical properties. Oxford: I.U.P.A.C., Blackwell Scientific Publications; 1987.
González EJ, Alonso L, Domínguez A. Physical properties of binary mixtures of the ionic liquid 1-methyl-3-octylimidazolium chloride with methanol, ethanol, and 1-propanol at T = (298.15, 313.15, and 328.15) K and at p = 0.1 MPa. J Chem Eng Data. 2006;51:1446–52. https://doi.org/10.1021/je060123k.
Alvarez VH, Mattedi S, Martín-Pastor M, Aznar M, Iglesias M. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate plus (water, methanol, or ethanol)}. J Chem Thermodyn. 2011;43:997–1010. https://doi.org/10.1016/j.jct.2011.01.014.
González B, Domínguez A, Tojo J. Dynamic viscosities, densities, and speed of sound and derived properties of the binary systems acetic acid with water, methanol, ethanol, ethyl acetate and methyl acetate at T = (293.15, 298.15, and 303.15) K at atmospheric pressure. J Chem Eng Data. 2004;49:1590–6. https://doi.org/10.1021/je0342825.
Singh S, Aznar M, Deenadayalu N. Densities, speeds of sound, and refractive indices for binary mixtures of 1-butyl-3-methylimidazolium methyl sulphate ionic liquid with alcohols at T = (298.15, 303.15, 308.15, and 313.15) K. J Chem Thermodyn. 2013;57:238–47. https://doi.org/10.1016/j.jct.2012.08.030.
Ortega J. Densities and refractive indices of pure alcohols as a function of temperature. J Chem Eng Data. 1982;27:312–7. https://doi.org/10.1021/je00029a024.
Rodríguez A, Canosa J, Tojo J. Physical properties of binary mixtures (dimethyl carbonate + alcohols) at several temperatures. J Chem Eng Data. 2001;46:1476–86. https://doi.org/10.1021/je0101193.
Gonçalves FAMM, Trindade AR, Costa CSMF, Bernardo JCS, Johnson I, Fonseca IMA, Ferreira AGM. PVT, viscosity, and surface tension of ethanol: new measurements and literature data evaluation. J Chem Thermodyn. 2010;42:1039–49. https://doi.org/10.1016/j.jct.2010.03.022.
Salinas R, Pla-Franco J, Lladosa E, Montón JB. Density, speed of sound, viscosity, and excess properties of binary mixtures formed by ethanol and bis(trifluorosulfonyl)imide-based ionic liquids. J Chem Eng Data. 2015;60:525–40. https://doi.org/10.1021/je500594z.
Coquelet C, Valtz A, Richon D, de la Fuente JC. Volumetric properties of the boldine + alcohol mixtures at atmospheric pressure from 283.15 to 333.15 K. A new method for the determination of the density of pure boldine. Fluid Phase Equilib. 2007;259:33–8. https://doi.org/10.1016/j.fluid.2007.04.030.
González EJ, González B, Macedo EA. Thermophysical properties of the pure ionic liquid 1-butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. J Chem Eng Data. 2013;58:1440–8. https://doi.org/10.1021/je300384g.
Yang C, Lai H, Liu Z, Ma P. Density and viscosity of binary mixtures of diethyl carbonate with alcohols at (293.15 to 363.15) K and predictive results by UNIFACVISCO group contribution method. J Chem Eng Data. 2006;51:1345–51. https://doi.org/10.1021/je0600808.
Papari MM, Ghodrati H, Fadaei F, Sadeghi R, Behrouz S, Rad MNS, Moghadasi J. Volumetric and ultrasonic study of mixtures of 2-phenylethanol with 1-butanol, 2-butanol, and 2-methyl-1-butanol at T = (298.15–323.15) K and atmospheric pressure: measurement and prediction. J Mol Liq. 2013;180:121–8. https://doi.org/10.1016/j.molliq.2012.12.037.
Varfolomeev M, Zaitseva K, Rakipov I, Solomonov B, Marczak W. Speed of sound, density and related thermodynamic excess properties of binary mixtures of butan-2-one with C1–C4 n-alkanols and chloroform. J Chem Eng Data. 2014;59:4118–32. https://doi.org/10.1021/je5007604.
Iglesias M, Orge B, Tojo J. Refractive indices, densities and excess properties on mixing of the systems acetone + methanol + water and acetone + methanol + 1-butanol at 298.15 K. Fluid Phase Equilib. 1996;126:203–33. https://doi.org/10.1016/S0378-3812(96)03130-5.
Bajic D, Zivkovic E, Serbanovic S, Kijevcanin M. Volumetric and viscometric study of binary systems of ethyl butyrate with alcohols. J Chem Eng Data. 2014;59:3677–90. https://doi.org/10.1021/je5005752.
Nikitin ED, Popov AP, Bogatishcheva NS, Faizullin MZ. Critical temperatures and pressures, heat capacities, and thermal diffusivities of levulinic acid and four n-alkyl levulinates. J Chem Thermodyn. 2019;135:233–40. https://doi.org/10.1016/j.jct.2019.03.040.
Zabransky M, Ruzicka V, Majer V, Domalski ES. Heat capacity of liquids: volume 1-critical review and recommended values. J Phys Chem Ref Data Monogr. 1996;5:6.
Privat R, Jaubert J-N. Discussion around the paradigm of ideal mixtures with emphasison the definition of the property changes on mixing. Chem Eng Sci. 2012;83:319–33. https://doi.org/10.1016/j.ces.2012.07.030.
Benson G, Kiyohara O. Evaluation of excess isentropic compressibilities and isochoric capacities. J Chem Thermodyn. 1979;11:1061–4. https://doi.org/10.1016/0021-9614(79)90136-8.
Reis JCR, Lampreia IMS, Santos AFS, Moita MLCJ, Douheret G. Refractive index of liquid mixtures: theory and experiment. ChemPhysChem. 2010;11:3722–33. https://doi.org/10.1002/cphc.201000566.
Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind Eng Chem. 1948;40:345–8. https://doi.org/10.1021/ie50458a036.
Heintz A, Schmittecker B, Wagner D, Lichtenthaler R. Excess volumes of binary 1-alkanol/hexane mixtures at temperatures between 283.15 and 323.15 K. J Chem Eng Data. 1986;31:487–92. https://doi.org/10.1021/je00046a030.
Rafiee HR, Frouzesh F. The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15) K and P = 0.087 MPa. J Adv Res. 2016;7:769–80. https://doi.org/10.1016/j.jare.2015.11.003.
Nikam PS, Jadhav SMTMC, Hasan M. Volumetric, viscometric and ultrasonic behavior of dimethylsulfoxide with normal alcohols (C1–C4) at 308.15 K. J Mol Liq. 1998;76:1–11. https://doi.org/10.1016/S0167-7322(97)00051-2.
Bhuiyan MMH, Uddin MH. Excess molar volumes and excess viscosities for mixtures of N,N-dimethylformamide with methanol, ethanol and 2-propanol at different temperatures. J Mol Liq. 2008;138:139–46. https://doi.org/10.1016/j.molliq.2007.07.006.
Marcus Y. Introduction to liquid state chemistry. New York: Wiley Interscience; 1977.
Mecke R. Infra-red spectra of hydroxylic compounds. Discuss Faraday Soc. 1950;9:161–77. https://doi.org/10.1039/df9500900161.
Hirschfelder JO, Curtiss CF, Bird RB. Molecular theory of gases and liquids. New York: Wiley; 1954.
Haarmann N, Enders S, Sadowski G. Heterosegmental modeling of long-chain molecules and related mixtures using PC-SAFT: 1. Polar compounds. Ind Eng Chem Res. 2018;58:2551–74. https://doi.org/10.1021/acs.iecr.8b03799.
Altuntepe E, Emel’yanenko VN, Forster-Rotgers M, Sadowski G, Verevkin SP, Held C. Thermodynamics of enzyme-catalyzed esterifications: II. Levulinic acid esterification with short-chain alcohols. Appl Microbiol Biotechnol. 2017;101:7509–21. https://doi.org/10.1007/s00253-017-8481-4.
Kleiner M, Sadowski G. Modeling of polar systems using PCP-SAFT: an approach to account for induced-association interactions. J Phys Chem C. 2007;111:15544–53. https://doi.org/10.1021/jp072640v.
Benkelfat-Seladji NL, Ouaar F, Hernández A, Muñoz-Rujas N, Bahadur I, Ahmed NCB, Montero E, Negadi L. Measurements and modeling of physicochemical properties of pure and binary mixtures containing 1,2-dimethoxyethane and some alcohols. J Chem Eng Data. 2021;66:3397–416. https://doi.org/10.1021/acs.jced.1c00131.
Benkelfat-Seladji NL, Ouaar F, Hernández A, Bahadur I, Muñoz-Rujas N, Singh SK, Montero E, Ahmed NCB, Negadi L. Density, speed of sound, refractive index of binary mixtures containing 2-ethoxyethanol and some alcohols: measurement and correlation. J Chem Thermodyn. 2022;170: 106762. https://doi.org/10.1016/j.jct.2022.106762.
Belhadj D, Negadi A, Hernández A, Mokbel I, Bahadur I, Negadi L. A study on mixing properties of binary mixtures of 1-hexene with alkoxyethanols at different temperatures. J Chem Thermodyn. 2022;172: 106820. https://doi.org/10.1016/j.jct.2022.106820.