Thermomechanical responses facilitating survival mechanisms in pronounced supercooled insects
Tài liệu tham khảo
Cannon, 1990
Carrillo, 2004, A simple method to adjust cooling rates for supercooling point determination, Cryo Lett., 25, 155
Dou, 2019, L-proline feeding for augmented freeze tolerance of Camponotus japonicus Mayr, Sci. Bull., 64, 1795, 10.1016/j.scib.2019.09.028
Dou, 2021, Bioinspired materials and technology for advanced cryopreservation, Trends Biotechnol.
Duman, 2001, Antifreeze and ice nucleator proteins in terrestrial arthropods, Annu. Rev. Physiol., 63, 327, 10.1146/annurev.physiol.63.1.327
Eisenberg, 2015, Stress–strain measurements in vitrified arteries permeated with synthetic ice modulators, J. Biomech. Eng.-T. ASME, 137, 10.1115/1.4030294
Galushko, 2005, Electrical, thermoelectric and thermophysical properties of hornet cuticle, Semicond. Sci. Technol., 20, 286, 10.1088/0268-1242/20/3/005
Giwa, 2017, The promise of organ and tissue preservation to transform medicine, Nat. Biotechnol., 35, 530, 10.1038/nbt.3889
Gotoh, 2019, Controlling heat release of crystallization from supercooling state of a solid-solid PCM, 2-amino-2-methyl-1,3-propanediol, Int. J. Heat Mass Tran., 137, 1132, 10.1016/j.ijheatmasstransfer.2019.03.151
Goyens, 2014, Finite-element modelling reveals force modulation of jaw adductors in stag beetles, J. R. Soc. Interface, 11, 10.1098/rsif.2014.0908
Guenther, 2007, Modeling of subcooling and solidification of phase change materials, Model. Simul. Mater. Sc., 15, 879, 10.1088/0965-0393/15/8/005
He, 2005, Analysis of thermal stress in cryosurgery of kidneys, J. Biomech. Eng.-T. ASME, 127, 656, 10.1115/1.1934021
Hua, 2001, Analyses of thermal stress and fracture during cryopreservation of blood vessel, Sci. China Ser. E-Technol. Sci., 44, 158, 10.1007/BF03014626
Jiang, 2017, Coupled experimental-modeling analyses of heat transfer in ex-vivo VS55-perfused porcine hepatic tissue being plunged in liquid nitrogen for vitreous cryopreservation, Int. J. Heat Mass Tran., 106, 970, 10.1016/j.ijheatmasstransfer.2016.10.059
Klocke, 2011, Water as a major modulator of the mechanical properties of insect cuticle, Acta Biomater., 7, 2935, 10.1016/j.actbio.2011.04.004
Kristiansen, 2009, The Siberian timberman Acanthocinus aedilis: a freeze-tolerant beetle with low supercooling points, J. Comp. Physiol. B, 179, 563, 10.1007/s00360-009-0340-x
Lewis, 2016, The Grand Challenges of Organ Banking: proceedings from the first global summit on complex tissue cryopreservation, Cryobiology, 72, 169, 10.1016/j.cryobiol.2015.12.001
Li, 2020, The phase change thermoelastic analysis of biological tissue with variable thermal properties during cryosurgery, J. Therm. Stresses, 43, 998, 10.1080/01495739.2020.1764894
Li, 2017, Heat transfer and phase transition in the selective laser melting process, Int. J. Heat Mass Tran., 108, 2408, 10.1016/j.ijheatmasstransfer.2017.01.093
Lowe, 1971, Supercooling in reptiles and other vertebrates, Comp. Biochem. Physiol. A Physiol., 39, 125, 10.1016/0300-9629(71)90352-5
Mazur, 1963, Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing, J. Gen. Physiol., 47, 347, 10.1085/jgp.47.2.347
Meng, 2020, Dynamic propagation of ice-water phase front in a supercooled water droplet, Int. J. Heat Mass Tran., 152, 10.1016/j.ijheatmasstransfer.2020.119468
Morris, 2013, Controlled ice nucleation in cryopreservation--a review, Cryobiology, 66, 85, 10.1016/j.cryobiol.2012.11.007
Pavlović, 2018, Photonic structures improve radiative heat exchange of Rosalia alpina (Coleoptera: Cerambycidae), J. Therm. Biol., 76, 126, 10.1016/j.jtherbio.2018.07.014
Rabin, 1996, An experimental study of the mechanical response of frozen biological tissues at cryogenic temperatures, Cryobiology, 33, 472, 10.1006/cryo.1996.0048
Salinas, 2020, The effects of -80 oC short-term storage on the mechanical response of tricuspid valve leaflets, J. Biomech., 98, 10.1016/j.jbiomech.2019.109462
Salt, 1966, Effect of cooling rate on the freezing temperatures of supercooled insects, Can. J. Zool., 44, 655, 10.1139/z66-064
Schulte, 2018, On the analytical modelling of the initial ice growth in a supercooled liquid droplet, Int. J. Heat Mass Tran., 127, 1070, 10.1016/j.ijheatmasstransfer.2018.06.089
Shi, 1998, Thermal stresses from large volumetric expansion during freezing of biomaterials, J. Biomech. Eng.-T. ASME, 120, 720, 10.1115/1.2834885
Solanki, 2017, Thermo-mechanical stress analysis of cryopreservation in cryobags and the potential benefit of nanowarming, Cryobiology, 76, 129, 10.1016/j.cryobiol.2017.02.001
Sømme, 1982, Supercooling and winter survival in terrestrial arthropods, Comp. Biochem. Physiol. A Physiol., 73, 519, 10.1016/0300-9629(82)90260-2
Sukumar, 2019, Numerical analysis of an enhanced cooling rate cryopreservation process in a biological tissue, J. Therm. Biol., 81, 146, 10.1016/j.jtherbio.2019.03.001
Sun, 2010, Micro-tensile testing of the lightweight laminated structures of beetle elytra cuticle, Adv. Nat. Sci., 3, 225
Sun, 2019, Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution, Int. J. Heat Mass Tran., 142, 10.1016/j.ijheatmasstransfer.2019.07.081
Toxopeus, 2018, Mechanisms underlying insect freeze tolerance, BIO Rev., 93, 1891, 10.1111/brv.12425
Uzan, 2017, A novel multi-dimensional model for solidification process with supercooling, Int. J. Heat Mass Tran., 106, 91, 10.1016/j.ijheatmasstransfer.2016.10.046
Wang, 2019, Morphology and ultrastructure of the infrabuccal pocket in Camponotus japonicus Mayr (Hymenoptera: Formicidae), Insect. Soc., 66, 637, 10.1007/s00040-019-00726-8
Worland, 1999, Ice-nucleating bacteria from the guts of two sub-Antarctic beetles, Hydromedion sparsutum and Perimylops antarcticus (Perimylopidae), Cryobiology, 38, 60, 10.1006/cryo.1998.2147
Zhang, 2018, Simulation and experiment on supercooled sessile water droplet freezing with special attention to supercooling and volume expansion effects, Int. J. Heat Mass Tran., 127, 975, 10.1016/j.ijheatmasstransfer.2018.07.021
Zhang, 2017, Modeling and experimental studies of enhanced cooling by medical gauze for cell cryopreservation by vitrification, Int. J. Heat Mass Tran., 114, 1, 10.1016/j.ijheatmasstransfer.2017.06.036
Zhou, 2017, Numerical simulation on thermal characteristics of supercooled salt hydrate PCM for energy storage: multiphase model, Appl. Therm. Eng., 125, 145, 10.1016/j.applthermaleng.2017.07.010
Zhou, 2013, Theoretical investigations of a novel microfluidic cooling/warming system for cell vitrification cryopreservation, Int. J. Heat Mass Tran., 65, 381, 10.1016/j.ijheatmasstransfer.2013.06.022
Zhou, 2011, Heat transfer analysis for the design and application of the passive cooling rate controlled device—box-in-box, Int. J. Heat Mass Tran., 54, 2136, 10.1016/j.ijheatmasstransfer.2010.12.014