Thermomechanical interactions in nonlocal thermoelastic medium with double porosity structure

Chandra Sekhar Mahato1, Siddhartha Biswas1
1Department of Mathematics, University of North Bengal, Darjeeling, West Bengal, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abdou, M.A., Othman, M.I.A., Tantawi, R.S., Mansour, N.T.: Effect of magnetic field on generalized thermoelastic medium with double porosity structure under L–S theory. Indian J. Phys. 94, 1993–2004 (2020a). https://doi.org/10.1007/s12648-019-01648-8

Abdou, M.A., Othman, M.I.A., Tantawi, R.S., Mansour, N.T.: Exact solutions of generalized thermoelastic medium with double porosity under L–S theory. Indian J. Phys. 94, 725–736 (2020b). https://doi.org/10.1007/s12648-019-01505-8

Biswas, S.: Thermal shock problem in porous orthotropic medium with three-phase-lag model. Indian J. Phys. 95, 289–298 (2021). https://doi.org/10.1007/s12648-020-01703-9

Biswas, S., Mahato, C.S.: Eigenvalue approach to study Rayleigh waves in nonlocal orthotropic layer lying over nonlocal orthotropic half-space with dual-phase-lag model. J. Therm. Stresses 45, 937–959 (2022). https://doi.org/10.1080/01495739.2022.2075503

Biswas, S., Mukhopadhyay, B.: Eigenfunction expansion method to analyze thermal shock behaviour in magneto-thermoelastic orthotropic medium under three theories. J. Therm. Stresses 41, 366–382 (2017). https://doi.org/10.1080/01495739.2017.1393780

Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998). https://doi.org/10.1115/1.3098984

Cheng, T., Li, W., Shi, Y., et al.: Effects of mechanical boundary conditions on thermal shock resistance of ultra-high temperature ceramics. Appl. Math. Mech. 36, 201–210 (2015). https://doi.org/10.1007/s10483-015-1909-7

Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983). https://doi.org/10.1007/BF00041230

Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974). https://doi.org/10.1016/0020-7225(74)90033-0

Eringen, A.C.: Edge dislocation on nonlocal elasticity. Int. J. Eng. Sci. 15, 177–183 (1977). https://doi.org/10.1016/0020-7225(77)90003-9

Eringen, A.C.: A mixture theory of electromagnetism and superconductivity. Int. J. Eng. Sci. 36, 525–543 (1998). https://doi.org/10.1016/S0020-7225(97)00091-8

Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 252–264 (1992). https://doi.org/10.1080/01495739208946136

Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993). https://doi.org/10.1007/BF00044969

Gupta, M., Mukhopadhyay, S.: A study on generalized thermoelasticity theory based on nonlocal heat conduction model with dual-phase-lag model. J. Therm. Stresses 42, 1123–1135 (2019). https://doi.org/10.1080/01495739.2019.1614503

Hong-Gang, W.: On the free energy and variational theorem of elastic problem in thermal shock. Appl. Math. Mech. 3, 675–681 (1982). https://doi.org/10.1007/BF01875732

Iesan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986). https://doi.org/10.1007/BF01302942

Iesan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stresses 37, 1017–1036 (2014). https://doi.org/10.1080/01495739.2014.914776

Kalkal, K.K., Kadian, A., Kumar, S.: Three-phase-lag functionally graded thermoelastic model having double porosity and gravitational effect. J. Ocean Eng. Sci. (2021). https://doi.org/10.1016/j.joes.2021.11.005

Kaur, I., Singh, K.: Functionally graded nonlocal thermoelastic nanobeam with memory-dependent derivatives. SN Appl. Sci. 4, 329 (2022a). https://doi.org/10.1007/s42452-022-05212-8

Kaur, I., Singh, K.: Nonlocal memory dependent derivative analysis of a photo-thermoelastic semiconductor resonator. Mech. Solids 48, 529–553 (2023b). https://doi.org/10.3103/S0025654422601094

Kaur, I., Lata, P., Singh, K.: Study of transversely isotropic nonlocal thermoelastic thin nano-beam resonators with multi-dual-phase-lag theory. Arch. Appl. Mech. 91, 317–341 (2021a). https://doi.org/10.1007/s00419-020-01771-7

Kaur, I., Singh, K., Craciun, E.M.: Recent advances in the theory of thermoelasticity and the modified models for the nanobeams: a review. Mech. Eng. 2, 2 (2023b). https://doi.org/10.1007/s44245-023-00009-4

Khalili, N.: Coupling effects in double porosity media with deformable matrix. Geophys. Res. Lett. 30, 2163 (2003). https://doi.org/10.1029/2003GL018544

Khalili, N., Selvaduri, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30, 2268–2271 (2003). https://doi.org/10.1029/2003GL018838

Khurana, A., Tomar, S.K.: Wave propagation in nonlocal microstretch solid. Appl. Math. Model. 40, 5858–5875 (2016). https://doi.org/10.1016/j.apm.2016.01.035

Kumar, R., Vohra, R., Abo-Dahab, S.M.: Rayleigh waves in thermoelastic medium with double porosity. MOJ Civil Eng. 4, 143–148 (2018). https://doi.org/10.15406/mojce.2018.04.00112

Kumar, D., Singh, D., Tomar, S.K., Hirose, S., Saitoh, T., Furukawa, A.: Waves in nonlocal elastic material with double porosity. Arch. Appl. Mech. 91, 4797–4815 (2021). https://doi.org/10.1007/s00419-021-02035-8

Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

Mahato, C.S., Biswas, B.: State space approach to study thermal shock problem in nonlocal thermoelastic medium with double porosity. J. Therm. Stresses 46(5), 415–443 (2023). https://doi.org/10.1080/01495739.2023.2173689

Mondal, S., Sarkar, N., Sarkar, N.: In dual-phase-lag thermoelastic materials with voids based on Eringen’s nonlocal elasticity. J. Therm. Stresses 42, 1035–1050 (2019). https://doi.org/10.1080/01495739.2019.1591249

Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Ration. Mech. Anal. 72, 175–201 (1979). https://doi.org/10.1007/BF00249363

Othman, M.I.A., Mansour, N.T.: Effect of relaxation time on generalized double porosity thermoelastic medium with diffusion. Geomech. Eng. 32, 475–482 (2023). https://doi.org/10.12989/gae.2023.32.5.475

Othman, M.I.A., Said, S.M., Eldemerdash, M.G.: The effect of nonlocal on poro-thermoelastic solid with dependent properties on reference temperature via the three-phase-lag model. J. Mater. Appl. (2023). https://doi.org/10.32732/jma.2023.12.1.21

Puri, P., Cowin, S.C.: Plane waves in linear elastic materials with voids. J. Elast. 15, 167–183 (1985). https://doi.org/10.1007/BF00041991

Roy Choudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007). https://doi.org/10.1080/01495730601130919

Said, S.M., Abd-Elaziz, E.M., Othman, M.I.A.: The effect of initial stress and rotation on a nonlocal fiber-reinforced thermoelastic medium with a fractional derivative heat transfer. Z. Angew. Math. Mech. (2021). https://doi.org/10.1002/zamm.202100110

Said, S.M., Abd-Elaziz, E.M., Othman, M.I.A.: Effect of gravity and initial stress on a nonlocal thermo-viscoelastic medium with two-temperature and fractional derivative heat transfer. Z. Angew. Math. Mech. (2022a). https://doi.org/10.1002/zamm.202100316

Said, S.M., Othman, M.I.A., Eldemerdash, M.G.: A novel model on nonlocal thermoelastic rotating porous medium with memory-dependent derivative. Multidiscip. Model. Mater. Struct. (2022b). https://doi.org/10.1108/MMMS-05-2022-0085

Sarkar, N., Mondal, S., Othman, M.I.A.: L–S theory for the propagation of the photo-thermal waves in a semiconducting nonlocal elastic medium. Waves Random Complex Media 32, 2622–2635 (2022). https://doi.org/10.1080/17455030.2020.1859161

Sherief, H., Saleh, H.: A half-space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 42, 4484–4493 (2005). https://doi.org/10.1016/j.ijsolstr.2005.01.001

Singh, D., Kumar, D., Tomar, S.K.: Plane harmonic waves in thermoelastic solid with double porosity. Math. Mech. Solids 25, 869–886 (2020). https://doi.org/10.1177/1081286519890053

Tomar, S., Sarkar, N.: Plane waves in nonlocal thermoelastic solid with voids. J. Therm. Stresses 42, 580–606 (2019). https://doi.org/10.1080/01495739.2018.155439

Tzou, D.Y.: A unique field approach for heat conduction from macro to micro scales. J. Heat Transf. 17, 8–16 (1995). https://doi.org/10.1115/1.2822329