Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold
Tài liệu tham khảo
Kandlikar, 2004, Evaluation of single phase flow in microchannels for high heat flux chip cooling—thermohydraulic performance enhancement and fabrication technology, Heat Transf. Eng., 25, 5, 10.1080/01457630490519772
Tran, 2000, Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development, Int. J. Multiph. Flow., 26, 1739, 10.1016/S0301-9322(99)00119-6
Thome, 2004, Boiling in microchannels: a review of experiment and theory, Int. J. Heat Fluid Flow., 25, 128, 10.1016/j.ijheatfluidflow.2003.11.005
Im, 2010, Enhanced boiling of a dielectric liquid on copper nanowire surfaces, Int. J. Micro-Nano Scale., 1, 79
Yeoh, 2004, On void fraction distribution during two-phase boiling flow instability, Int. J. Heat Mass Transf., 47, 413, 10.1016/S0017-9310(03)00366-1
Zhang, 2009, Ledinegg instability in microchannels, Int. J. Heat Mass Transf., 52, 5661, 10.1016/j.ijheatmasstransfer.2009.09.008
Zhang, 2015, Transient characteristics and control of active thermal management systems, Annu. Rev. Heat Transf., 18, 245, 10.1615/AnnualRevHeatTransfer.2015012305
Hetsroni, 2002, A uniform temperature heat sink for cooling of electronic devices, Int. J. Heat Mass Transf., 45, 3275, 10.1016/S0017-9310(02)00048-0
Bogojevic, 2009, Two-phase flow instabilities in a silicon microchannels heat sink, Int. J. Heat Fluid Flow., 30, 854, 10.1016/j.ijheatfluidflow.2009.03.013
Barber, 2009, Hydrodynamics and heat transfer during flow boiling instabilities in a single microchannel, Appl. Therm. Eng., 29, 1299, 10.1016/j.applthermaleng.2008.07.004
Hetsroni, 2005, Explosive boiling of water in parallel micro-channels, Int. J. Multiph. Flow., 31, 371, 10.1016/j.ijmultiphaseflow.2005.01.003
Zhu, 2016, Suppressed dry-out in two-phase microchannels via surface structures, J. Heat Transf., 138, 10.1115/1.4033818
Yang, 2014, Flow boiling phenomena in a single annular flow regime in microchannels (I): Characterization of flow boiling heat transfer, Int. J. Heat., 68, 703, 10.1016/j.ijheatmasstransfer.2013.09.058
Yang, 2013, Can multiple flow boiling regimes be reduced into a single one in microchannels?, Appl. Phys. Lett., 103
Yang, 2014, Flow boiling phenomena in a single annular flow regime in microchannels (II): reduced pressure drop and enhanced critical heat flux, Int. J., 68, 716
Zhu, 2017, Structures suppressing high-frequency temperature oscillations in microchannels with surface structures, Appl. Phys. Lett., 110, 10.1063/1.4974048
Li, 2012, Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires, Nano Lett., 12, 3385, 10.1021/nl300049f
Kandlikar, 2006, Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites, J. Heat Transf., 128, 389, 10.1115/1.2165208
Morshed, 2012, Enhanced flow boiling in a microchannel with integration of nanowires, Appl. Therm. Eng., 32, 68, 10.1016/j.applthermaleng.2011.08.031
Wang, 2008, An experimental study of flow boiling instability in a single microchannel, Int. Commun. Heat Mass Transf., 35, 1229, 10.1016/j.icheatmasstransfer.2008.07.019
S.G. Kandlikar, D.A. Willistein, J. Borrelli, Experimental evaluation of pressure drop elements and fabricated nucleation sites for stabilizing flow boiling in minichannels and microchannels, in: ASME 3rd Int. Conf. Microchannels Minichannels, Part B Cont’d, ASME, 2005: pp. 115–124.
Prajapati, 2015, A comparative study of flow boiling heat transfer in three different configurations of microchannels, Int. J. Heat Mass Transf., 85, 711, 10.1016/j.ijheatmasstransfer.2015.02.016
Lee, 2012, Enhanced thermal transport in microchannel using oblique fins, J. Heat Transf., 134, 10.1115/1.4006843
Law, 2014, Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels, Int. J. Heat Mass Transf., 76, 419, 10.1016/j.ijheatmasstransfer.2014.04.045
Lu, 2008, Stabilization of flow boiling in microchannel heat sinks with a diverging cross-section design, J. Micromech. Microeng., 18, 10.1088/0960-1317/18/7/075035
Balasubramanian, 2011, Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels – A comparative study, Int. J. Therm. Sci., 50, 2413, 10.1016/j.ijthermalsci.2011.07.007
Kalani, 2015, Flow patterns and heat transfer mechanisms during flow boiling over open microchannels in tapered manifold (OMM), Int. J. Heat Mass Transf., 89, 494, 10.1016/j.ijheatmasstransfer.2015.05.070
Kandlikar, 2013, Enhanced flow boiling over open microchannels with uniform and tapered gap manifolds, J. Heat Transf., 135, 10.1115/1.4023574
Kuo, 2008, Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities, J. Heat Transf., 130, 72402, 10.1115/1.2908431
Balasubramanian, 2013, Flow boiling heat transfer and pressure drop in stepped fin microchannels, Int. J. Heat Mass Transf., 67, 234, 10.1016/j.ijheatmasstransfer.2013.08.023
Woodcock, 2015, Piranha Pin Fin (PPF) - Advanced flow boiling microstructures with low surface tension dielectric fluids, Int. J. Heat Mass Transf., 90, 591, 10.1016/j.ijheatmasstransfer.2015.06.072
Yu, 2016, A comparative study on flow boiling in microchannel with piranha pin fin, J. Heat Transf., 138, 10.1115/1.4033743
David, 2011, Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger, Int. J. Heat Mass Transf., 54, 5504, 10.1016/j.ijheatmasstransfer.2011.07.040
Deng, 2017, Flow boiling enhancement of structured microchannels with micro pin fins, Int. J. Heat., 105, 338, 10.1016/j.ijheatmasstransfer.2016.09.086
Zhu, 2016, Surface structure enhanced microchannel flow boiling, J. Heat Transf., 138, 10.1115/1.4033497
Wang, 2007, Unstable and stable flow boiling in parallel microchannels and in a single microchannel, Int. J. Heat Mass Transf., 50, 4297, 10.1016/j.ijheatmasstransfer.2007.01.033
Wu, 2003, Visualization and measurements of periodic boiling in silicon microchannels, Int. J. Heat Mass Transf., 46, 2603, 10.1016/S0017-9310(03)00039-5
Koşar, 2006, Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors, J. Heat Transf., 128, 251, 10.1115/1.2150837
Khanikar, 2009, Effects of carbon nanotube coating on flow boiling in a micro-channel, Int. J. Heat Mass Transf., 52, 3805, 10.1016/j.ijheatmasstransfer.2009.02.007
Balasubramanian, 2013, Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels, Int. J. Heat Mass Transf., 66, 655, 10.1016/j.ijheatmasstransfer.2013.07.050
Law, 2016, Effects of varying secondary channel widths on flow boiling heat transfer and pressure characteristics in oblique-finned microchannels, Int. J. Heat Mass Transf., 101, 313, 10.1016/j.ijheatmasstransfer.2016.05.055
Saarikoski, 2009, Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro-nanostructuring, Appl. Surf. Sci., 255, 9000, 10.1016/j.apsusc.2009.06.073
Nam, 2013, A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications, J. Adhes. Sci. Technol., 27, 2163, 10.1080/01694243.2012.697783
Ghosh, 2018, Facile fabrication of nanostructured microchannels for flow boiling heat transfer enhancement, Heat Transf. Eng., 1
Raza, 2018, Wettability-independent critical heat flux during boiling crisis in foaming solutions, Int. J. Heat Mass Transf., 126, 567, 10.1016/j.ijheatmasstransfer.2018.05.062
Lee, 2012, Morphological change of plain and nano-porous surfaces during boiling and its effect on nucleate pool boiling heat transfer, Exp. Therm. Fluid Sci., 40, 150, 10.1016/j.expthermflusci.2012.02.011
Davis, 1966, The incipience of nucleate boiling in forced convection flow, AIChE J., 12, 774, 10.1002/aic.690120426
Ghosh, 2016, Onset of Nucleate Boiling, Void Fraction, and Liquid Film Thickness, 5
Miljkovic, 2012, Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces, Nano Lett., 13, 179, 10.1021/nl303835d
Coleman, 1995, Engineering application of experimental uncertainty analysis, AIAA J, 33, 1888, 10.2514/3.12742
Callizo, 2010
Zhang, 2014, Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces, Int. J. Heat Mass Transf., 73, 551, 10.1016/j.ijheatmasstransfer.2014.02.032
Morshed, 2013, Effect of Cu-Al2O3 nanocomposite coating on flow boiling performance of a microchannel, Appl. Therm. Eng., 51, 1135, 10.1016/j.applthermaleng.2012.09.047