Thermogenic capacity in subterranean Ctenomys: Species-specific role of thermogenic mechanisms

Journal of Thermal Biology - Tập 80 - Trang 164-171 - 2019
Facundo Luna1, Jordi Sastre-Serra2,3, Jordi Oliver2,3, C. Daniel Antenucci1
1Laboratorio de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata CC1245, Argentina
2Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d′Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Palma, Spain
3Instituto de Investigación Sanitaria Illes Balears, IdISBa, Palma, Spain

Tài liệu tham khảo

Almeida, 2011, Thermogenic capacity of three species of fruit-eating phyllostomid bats, J. Therm. Biol., 36, 225, 10.1016/j.jtherbio.2011.03.005 Alvarez, 2012, Histochemical and morphometric analyses of the musculature of the forelimb of the subterranean rodent Ctenomys talarum (Octodontoidea), Anat. Histol. Embryol., 41, 317, 10.1111/j.1439-0264.2012.01137.x Baldo, 2015, Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum, J. Therm. Biol., 53, 113, 10.1016/j.jtherbio.2015.09.002 2007 Bernardo, 2007, Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure, Biol. Lett., 3, 695, 10.1098/rsbl.2007.0259 Bernardo, 2006, Physiological constraints on organismal response to global warming: mechanistic insights from clinally varying populations and implications for assessing endangerment, Biol. Lett., 2, 135, 10.1098/rsbl.2005.0417 Bozinovic, 1989, Maximum metabolic rate of rodents: physiological and ecological consequences on distributional limits, Funct. Ecol., 3, 173, 10.2307/2389298 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Cannon, 2011, Nonshivering thermogenesis and its adequate measurement in metabolic studies, J. Exp. Biol., 214, 242, 10.1242/jeb.050989 Cannon, 2004, Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277, 10.1152/physrev.00015.2003 Chown, 2008, Macrophysiology for a changing world, Proc. R. Soc. B Biol. Sci., 275, 1469, 10.1098/rspb.2008.0137 Chown, 2004, Macrophysiology: large-scale patterns in physiological traits and their ecological implications, Funct. Ecol., 18, 159, 10.1111/j.0269-8463.2004.00825.x Chrzanowska-Lightowlers, 1993, A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells, Anal. Biochem., 214, 45, 10.1006/abio.1993.1454 Feist, 1976, Norepinephrine thermogenesis in seasonally acclimatized and cold acclimated red-backed voles in Alaska, Can. J. Physiol. Pharmacol., 54, 146, 10.1139/y76-023 Foster, 1979, Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis, Can. J. Physiol. Pharmacol., 57, 257, 10.1139/y79-039 Garland, 1994, Evolutionary physiology, Annu. Rev. Physiol., 56, 579, 10.1146/annurev.ph.56.030194.003051 Golozoubova, 2006, UCP1 is essential for adaptive adrenergic nonshivering thermogenesis, Am. J. Physiol. -Endocrinol. Metab., 291, E350, 10.1152/ajpendo.00387.2005 Hayes, 1986, Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice, Peromyscus maniculatus, Physiol. Zool., 59, 473, 10.1086/physzool.59.4.30158600 Hohtola, E., 2004. Shivering Thermogenesis in Birds and Mammals, In: Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. Twelfth International Hibernation Symposium. Biological Papers of the University of Alaska, Fairbanks, pp. 241–252. Janský, 1973, Non-shivering thermogenesis and its thermoregulatory significance, Biol. Rev., 48, 85, 10.1111/j.1469-185X.1973.tb01115.x Klaus, 1988, Seasonal acclimation of bank voles and wood mice: nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria, J. Comp. Physiol. B, 158, 157, 10.1007/BF01075829 Klingenspor, 2003, Cold-induced recruitment of brown adipose tissue thermogenesis, Exp. Physiol., 88, 141, 10.1113/eph8802508 Klingenspor, 1996, Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation, Biochem. J., 316, 607, 10.1042/bj3160607 Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0 Lighton, 2008 Luna, 2007, Energy and distribution in subterranean rodents: Sympatry between two species of the genus Ctenomys, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 147, 948, 10.1016/j.cbpa.2007.02.032 Luna, 2009, Comparative energetics of the subterranean Ctenomys rodents: breaking patterns, Physiol. Biochem. Zool., 82, 226, 10.1086/597526 Luna, 2015, Macrophysiological patterns in the energetics of Caviomorph rodents: implications in a changing world, 245 Luna, 2017, Understanding evolutionary variation in basal metabolic rate: an analysis in subterranean rodents, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 206, 87, 10.1016/j.cbpa.2017.02.002 Luna, 2012, Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum, J. Comp. Physiol. B, 182, 971, 10.1007/s00360-012-0675-6 Medina, 2007, Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann's rule: converse Bergmann's rule in Ctenomys, J. Biogeogr., 34, 1439, 10.1111/j.1365-2699.2007.01708.x Meroi, 2014, Variación estacional de la tasa metabólica de reposo en Ctenomys talarum (Rodentia, Ctenomyidae): Ausencia de efectos ambientales, Mastozool. Neotrop., 21, 241 Naya, 2013, Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation, Proc. R. Soc. B Biol. Sci., 280, 10.1098/rspb.2013.1629 Nespolo, 2001, When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia), Physiol. Biochem. Zool., 74, 325, 10.1086/320420 Nespolo, 1999, Thermal acclimation, maximum metabolic rate, and nonshivering thermogenesis of Phyllotis xanthopygus (Rodentia) in the Andes mountains, J. Mammal., 80, 742, 10.2307/1383243 Nespolo, 2017, Phylogenetic analysis supports the aerobic-capacity model for the evolution of endothermy, Am. Nat., 189, 13, 10.1086/689598 Osovitz, 2007, Marine macrophysiology: studying physiological variation across large spatial scales in marine systems, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 147, 821, 10.1016/j.cbpa.2007.02.012 Pinheiro, 2018, nlme: linear and nonlinear mixed effects models, R. Package Version, 3, 1 Puigserver, 1991, Evidence for masking of brown adipose tissue mitochondrial GDP-binding sites in response to fasting in rats made obese by dietary manipulation. Effects of reversion to standard diet, Biochem. J., 279, 575, 10.1042/bj2790575 Core Team, 2018 Rezende, 2004, Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents, Evolution, 58, 1361, 10.1111/j.0014-3820.2004.tb01714.x Rodríguez-Serrano, 2009, Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales, Glob. Change Biol., 15, 2116, 10.1111/j.1365-2486.2009.01854.x Rosenmann, 1974, Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2, Am. J. Physiol. -Leg. Content, 226, 490, 10.1152/ajplegacy.1974.226.3.490 Rowland, 2015, The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy: non-shivering thermogenic mechanisms in evolution, Biol. Rev., 90, 1279, 10.1111/brv.12157 Sadowska, 2005, Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy, Evolution, 59, 672, 10.1111/j.0014-3820.2005.tb01025.x Scholander, 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99, 237, 10.2307/1538741 Van Sant, 2008, Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus), Physiol. Biochem. Zool., 81, 605, 10.1086/588175 Vassallo, 1998, Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: octodontidae), J. Zool., 244, 415, 10.1111/j.1469-7998.1998.tb00046.x Vera, 2011, Cortisol and corticosterone exhibit different seasonal variation and responses to acute stress and captivity in tuco-tucos (Ctenomys talarum), Gen. Comp. Endocrinol., 170, 550, 10.1016/j.ygcen.2010.11.012 Wharton, 1967, Cytochrome oxidase from beef heart mitochondria, 245, 10.1016/0076-6879(67)10048-7 Withers, 1977, Measurements of metabolic rate, VCO2, and evaporative water loss with a flow through mask, J. Appl. Physiol., 42, 120, 10.1152/jappl.1977.42.1.120 Withers, 2016, Ecological and environmental physiology of mammals Wunder, B.A., Gettinger, R.D., 1996. Effects of body mass and temperature acclimation on the nonshivering thermogenic response of small mammals, In: Adaptations to the Cold: Proceedings of the Tenth International Hibernation Symposium. University of New England Press, Armidale, pp. 131–139.