Thermogenic capacity in subterranean Ctenomys: Species-specific role of thermogenic mechanisms
Tài liệu tham khảo
Almeida, 2011, Thermogenic capacity of three species of fruit-eating phyllostomid bats, J. Therm. Biol., 36, 225, 10.1016/j.jtherbio.2011.03.005
Alvarez, 2012, Histochemical and morphometric analyses of the musculature of the forelimb of the subterranean rodent Ctenomys talarum (Octodontoidea), Anat. Histol. Embryol., 41, 317, 10.1111/j.1439-0264.2012.01137.x
Baldo, 2015, Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum, J. Therm. Biol., 53, 113, 10.1016/j.jtherbio.2015.09.002
2007
Bernardo, 2007, Interspecies physiological variation as a tool for cross-species assessments of global warming-induced endangerment: validation of an intrinsic determinant of macroecological and phylogeographic structure, Biol. Lett., 3, 695, 10.1098/rsbl.2007.0259
Bernardo, 2006, Physiological constraints on organismal response to global warming: mechanistic insights from clinally varying populations and implications for assessing endangerment, Biol. Lett., 2, 135, 10.1098/rsbl.2005.0417
Bozinovic, 1989, Maximum metabolic rate of rodents: physiological and ecological consequences on distributional limits, Funct. Ecol., 3, 173, 10.2307/2389298
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Cannon, 2011, Nonshivering thermogenesis and its adequate measurement in metabolic studies, J. Exp. Biol., 214, 242, 10.1242/jeb.050989
Cannon, 2004, Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277, 10.1152/physrev.00015.2003
Chown, 2008, Macrophysiology for a changing world, Proc. R. Soc. B Biol. Sci., 275, 1469, 10.1098/rspb.2008.0137
Chown, 2004, Macrophysiology: large-scale patterns in physiological traits and their ecological implications, Funct. Ecol., 18, 159, 10.1111/j.0269-8463.2004.00825.x
Chrzanowska-Lightowlers, 1993, A microtiter plate assay for cytochrome c oxidase in permeabilized whole cells, Anal. Biochem., 214, 45, 10.1006/abio.1993.1454
Feist, 1976, Norepinephrine thermogenesis in seasonally acclimatized and cold acclimated red-backed voles in Alaska, Can. J. Physiol. Pharmacol., 54, 146, 10.1139/y76-023
Foster, 1979, Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis, Can. J. Physiol. Pharmacol., 57, 257, 10.1139/y79-039
Garland, 1994, Evolutionary physiology, Annu. Rev. Physiol., 56, 579, 10.1146/annurev.ph.56.030194.003051
Golozoubova, 2006, UCP1 is essential for adaptive adrenergic nonshivering thermogenesis, Am. J. Physiol. -Endocrinol. Metab., 291, E350, 10.1152/ajpendo.00387.2005
Hayes, 1986, Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice, Peromyscus maniculatus, Physiol. Zool., 59, 473, 10.1086/physzool.59.4.30158600
Hohtola, E., 2004. Shivering Thermogenesis in Birds and Mammals, In: Life in the Cold: Evolution, Mechanisms, Adaptation, and Application. Twelfth International Hibernation Symposium. Biological Papers of the University of Alaska, Fairbanks, pp. 241–252.
Janský, 1973, Non-shivering thermogenesis and its thermoregulatory significance, Biol. Rev., 48, 85, 10.1111/j.1469-185X.1973.tb01115.x
Klaus, 1988, Seasonal acclimation of bank voles and wood mice: nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria, J. Comp. Physiol. B, 158, 157, 10.1007/BF01075829
Klingenspor, 2003, Cold-induced recruitment of brown adipose tissue thermogenesis, Exp. Physiol., 88, 141, 10.1113/eph8802508
Klingenspor, 1996, Biogenesis of thermogenic mitochondria in brown adipose tissue of Djungarian hamsters during cold adaptation, Biochem. J., 316, 607, 10.1042/bj3160607
Laemmli, 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680, 10.1038/227680a0
Lighton, 2008
Luna, 2007, Energy and distribution in subterranean rodents: Sympatry between two species of the genus Ctenomys, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 147, 948, 10.1016/j.cbpa.2007.02.032
Luna, 2009, Comparative energetics of the subterranean Ctenomys rodents: breaking patterns, Physiol. Biochem. Zool., 82, 226, 10.1086/597526
Luna, 2015, Macrophysiological patterns in the energetics of Caviomorph rodents: implications in a changing world, 245
Luna, 2017, Understanding evolutionary variation in basal metabolic rate: an analysis in subterranean rodents, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 206, 87, 10.1016/j.cbpa.2017.02.002
Luna, 2012, Maximal thermogenic capacity and non-shivering thermogenesis in the South American subterranean rodent Ctenomys talarum, J. Comp. Physiol. B, 182, 971, 10.1007/s00360-012-0675-6
Medina, 2007, Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann's rule: converse Bergmann's rule in Ctenomys, J. Biogeogr., 34, 1439, 10.1111/j.1365-2699.2007.01708.x
Meroi, 2014, Variación estacional de la tasa metabólica de reposo en Ctenomys talarum (Rodentia, Ctenomyidae): Ausencia de efectos ambientales, Mastozool. Neotrop., 21, 241
Naya, 2013, Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation, Proc. R. Soc. B Biol. Sci., 280, 10.1098/rspb.2013.1629
Nespolo, 2001, When nonshivering thermogenesis equals maximum metabolic rate: thermal acclimation and phenotypic plasticity of fossorial Spalacopus cyanus (Rodentia), Physiol. Biochem. Zool., 74, 325, 10.1086/320420
Nespolo, 1999, Thermal acclimation, maximum metabolic rate, and nonshivering thermogenesis of Phyllotis xanthopygus (Rodentia) in the Andes mountains, J. Mammal., 80, 742, 10.2307/1383243
Nespolo, 2017, Phylogenetic analysis supports the aerobic-capacity model for the evolution of endothermy, Am. Nat., 189, 13, 10.1086/689598
Osovitz, 2007, Marine macrophysiology: studying physiological variation across large spatial scales in marine systems, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 147, 821, 10.1016/j.cbpa.2007.02.012
Pinheiro, 2018, nlme: linear and nonlinear mixed effects models, R. Package Version, 3, 1
Puigserver, 1991, Evidence for masking of brown adipose tissue mitochondrial GDP-binding sites in response to fasting in rats made obese by dietary manipulation. Effects of reversion to standard diet, Biochem. J., 279, 575, 10.1042/bj2790575
Core Team, 2018
Rezende, 2004, Climatic adaptation and the evolution of basal and maximum rates of metabolism in rodents, Evolution, 58, 1361, 10.1111/j.0014-3820.2004.tb01714.x
Rodríguez-Serrano, 2009, Interplay between global patterns of environmental temperature and variation in nonshivering thermogenesis of rodent species across large spatial scales, Glob. Change Biol., 15, 2116, 10.1111/j.1365-2486.2009.01854.x
Rosenmann, 1974, Maximum oxygen consumption and heat loss facilitation in small homeotherms by He-O2, Am. J. Physiol. -Leg. Content, 226, 490, 10.1152/ajplegacy.1974.226.3.490
Rowland, 2015, The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy: non-shivering thermogenic mechanisms in evolution, Biol. Rev., 90, 1279, 10.1111/brv.12157
Sadowska, 2005, Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy, Evolution, 59, 672, 10.1111/j.0014-3820.2005.tb01025.x
Scholander, 1950, Heat regulation in some arctic and tropical mammals and birds, Biol. Bull., 99, 237, 10.2307/1538741
Van Sant, 2008, Contribution of shivering and nonshivering thermogenesis to thermogenic capacity for the deer mouse (Peromyscus maniculatus), Physiol. Biochem. Zool., 81, 605, 10.1086/588175
Vassallo, 1998, Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents genus Ctenomys (Caviomorpha: octodontidae), J. Zool., 244, 415, 10.1111/j.1469-7998.1998.tb00046.x
Vera, 2011, Cortisol and corticosterone exhibit different seasonal variation and responses to acute stress and captivity in tuco-tucos (Ctenomys talarum), Gen. Comp. Endocrinol., 170, 550, 10.1016/j.ygcen.2010.11.012
Wharton, 1967, Cytochrome oxidase from beef heart mitochondria, 245, 10.1016/0076-6879(67)10048-7
Withers, 1977, Measurements of metabolic rate, VCO2, and evaporative water loss with a flow through mask, J. Appl. Physiol., 42, 120, 10.1152/jappl.1977.42.1.120
Withers, 2016, Ecological and environmental physiology of mammals
Wunder, B.A., Gettinger, R.D., 1996. Effects of body mass and temperature acclimation on the nonshivering thermogenic response of small mammals, In: Adaptations to the Cold: Proceedings of the Tenth International Hibernation Symposium. University of New England Press, Armidale, pp. 131–139.