Thermoelectric interface materials: A perspective to the challenge of thermoelectric power generation module

Journal of Materiomics - Tập 5 Số 3 - Trang 321-336 - 2019
Weishu Liu1,2, Shengqiang Bai3
1Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
3The State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bennett, 1995, Space application, 515

Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv Mater, 19, 1043, 10.1002/adma.200600527

Ioffe, 1957

Kim, 2015, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proc Nation Acad Sci, 112, 8205, 10.1073/pnas.1510231112

Kim, 2017, The bridge between the materials and devices of thermoelectric power generators, Energy Environ Sci, 10, 69, 10.1039/C6EE02488B

Harman, 2002, Quantum dot superlattice thermoelectric materials and devices, Science, 297, 2229, 10.1126/science.1072886

Ohta, 2007, Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3, Nat Mater, 6, 129, 10.1038/nmat1821

Poudel, 2008, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science, 320, 634, 10.1126/science.1156446

Hsu, 2014, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963

Zhao, 2017, Superparamagnetic enhancement of thermoelectric performance, Nature, 549, 247, 10.1038/nature23667

Liu, 2009, Long-term retention in organic ferroelectric-graphene memories, Appl Phys Lett, 93, 042109, 10.1063/1.2965123

Heremans, 2008, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science, 321, 554, 10.1126/science.1159725

Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996

Keppens, 1998, Localized vibrational modes in metallic solids, Nature, 395, 876, 10.1038/27625

Snyder, 2008, Complex thermoelectric materials, Nat Mater, 7, 105, 10.1038/nmat2090

Liu, 2012, Copper ion liquid-like thermoelectrics, Nat Mater, 11, 422, 10.1038/nmat3273

Wang, 2003, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature, 423, 425, 10.1038/nature01639

Liu, 2017, Entropy as a gene-like performance indicator promoting thermoelectric materials, Adv Mater, 29, 10.1002/adma.201702712

Liu, 2017, New trends, strategies and opportunities in thermoelectric materials: a perspective, Mater Today Phys, 1, 50, 10.1016/j.mtphys.2017.06.001

Zhang, 2016, Thermoelectric devices for power generation: recent progress and future challenges, Adv Eng Mater, 18, 194, 10.1002/adem.201500333

Liu, 2015, Current progress and future challenges in thermoelectric power generation: from materials to devices, Acta Mater, 87, 357, 10.1016/j.actamat.2014.12.042

He, 2018, Thermoelectric devices: a review of devices, architectures, and contact optimization, Adv Mater Technol, 3, 1700256, 10.1002/admt.201700256

Crane, 2006, Progress towards maximizing the performance of a thermoelectric power generator, 11

Zhang, 2015, High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery, Energy Convers Manag, 105, 946, 10.1016/j.enconman.2015.08.051

Suarez, 2016, Designing thermoelectric generators for self-powered wearable electronics, Energy Environ Sci, 9, 2099, 10.1039/C6EE00456C

Kim, 2011, A thermoelectric generator using engine coolant for light-duty internal combustion engine-powered vehicles, J Electron Mater, 40, 812, 10.1007/s11664-011-1580-6

He, 2016, Influence of different cooling methods on thermoelectric performance of an engine exhaust gas waste heat recovery system, Appl Energy, 162, 1251, 10.1016/j.apenergy.2015.03.036

Huang, 2018, A novel design of thermoelectric generator for automotive waste heat recovery, Automot Innov, 1, 54, 10.1007/s42154-018-0006-z

Yilbas, 2010, Thermoelectric device and optimum external load parameter and slenderness ratio, Energy, 35, 5380, 10.1016/j.energy.2010.07.019

Twaha, 2017, Performance analysis of thermoelectric generator using dc-dc converter with incremental conductance based maximum power point tracking, Energy Sustain Develop, 37, 86, 10.1016/j.esd.2017.01.003

Goldsmid, 1954, The use of semiconductors in thermoelectric refrigeration, Br J Appl Phys, 5, 386, 10.1088/0508-3443/5/11/303

Telkes, 1954, Solar thermoelectric generators, J Appl Phys, 25, 765, 10.1063/1.1721728

Liu, 2013, Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications, J Mater Chem A, 1, 13093, 10.1039/c3ta13456c

Muto, 2013, Skutterudite unicouple characterization for energy harvesting applications, Adv Energy Mater, 3, 245, 10.1002/aenm.201200503

Kraemer, 2016, Concentrating solar thermoelectric generators with a peak efficiency of 7.4%, Nat Energy, 1, 16153, 10.1038/nenergy.2016.153

Hao, 2016, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300°C, Energy Environ Sci, 9, 3120, 10.1039/C6EE02017H

Zhang, 2017, Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration, Energy Environ Sci, 10, 956, 10.1039/C7EE00447H

Hu, 2016, Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules, Energy Environ Sci, 9, 517, 10.1039/C5EE02979A

Lan, 2008, Diffusion of nickel and tin in p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3 thermoelectric materials, Appl Phys Lett, 92, 101910, 10.1063/1.2896310

Barako, 2012, A reliability study with infrared imaging of thermoelectric modules under thermal cycling, 86

Barako, 2013, Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module, J Electron Mater, 42, 372, 10.1007/s11664-012-2366-1

Fan, 2015, Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo–Ti/Mo–Cu/Ni thermoelectric joints, Ceram Int, 41, 7590, 10.1016/j.ceramint.2015.02.083

Zhang, 2018, Interface stability of skutterudite thermoelectric materials/Ti88Al12, J Inorg Mater, 33, 889

Ziabari, 2014, Minimizing thermally induced interfacial shearing stress in a thermoelectric module with low fractional area coverage, Microelectron J, 45, 547, 10.1016/j.mejo.2013.12.004

Liu, 2017, Contact for Bi2Te3 –based thermoelectric leg, 605

Weitzman, 1967

Talor, 2013, Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation, Appl Phys Lett, 103, 043902, 10.1063/1.4816054

Lin, 2011, Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, J Mater Sci Mater Electron, 22, 1313, 10.1007/s10854-011-0306-0

Zhang, 2014

Cobble, 1995, Calculations of generator performance, 491

Hogblom, 2014, Analysis of thermoelectric generator performance by use of simulations and experiments, J Electron Mater, 43, 2247, 10.1007/s11664-014-3020-x

Swartz, 1987, Thermal resistance at interfaces, Appl Phys Lett, 51, 2200, 10.1063/1.98939

Pollack, 1969, Kapitza resistance, Rev Mod Phys, 41, 48, 10.1103/RevModPhys.41.48

Cahill, 2014, Nanoscale thermal transport. II. 2003–2012, Appl Phys Rev, 1, 10.1063/1.4832615

Khalatnikov, 1965

Swartz, 1989, Thermal boundary resistance, Rev Mod Phys, 61, 605, 10.1103/RevModPhys.61.605

Wang, 2018, Experimental study of the effects of the thermal contact resistance on the performance of thermoelectric generator, Appl Therm Eng, 130, 847, 10.1016/j.applthermaleng.2017.11.036

Gao, 1995, Peltier devices as generators, 481

Sakamoto, 2014, Selection and evaluation of thermal interface materials for reduction of the thermal contact resistance of thermoelectric generators, J Electron Mater, 43, 3792, 10.1007/s11664-014-3165-7

Hokazono, 2014, Thermoelectric properties and thermal stability of PEDOT:PSS films on a polyimide substrate and application in flexible energy conversion devices, J Electron Mater, 43, 2196, 10.1007/s11664-014-3003-y

Wan, 2016, Flexible thermoelectric foil for wearable energy harvesting, Nano Energy, 30, 840, 10.1016/j.nanoen.2016.09.011

Zhu, 2018, Enhanced interfacial adhesion and thermal stability in bismuth telluride/nickel/copper multilayer films with low electrical contact resistance, Adv Mater Interfaces, 5, 10.1002/admi.201801279

He, 2018, High-efficiency thin-film superlattice thermoelectric cooler modules enabled by low resistivity contacts, Adv Electron Mater, 4, 1700381, 10.1002/aelm.201700381

Zhang, 2018, Development and optimization of high power density micro-thermoelectric generators, J Phys Conf Ser, 1052, 012009, 10.1088/1742-6596/1052/1/012009

Du, 2018, Flexible thermoelectric materials and devices, Appl Mater Today, 12, 366, 10.1016/j.apmt.2018.07.004

Sze, 2007

Jie, 2017, Contact for skutterudites, 625

Xiong, 2010, Electronic structures and stability of Ni/Bi2Te3 and Co/Bi2Te3 interfaces, J Phys D Appl Phys, 43, 115303, 10.1088/0022-3727/43/11/115303

Mengali, 1962, Contact resistance studies on thermoelectric materials, Adv Energy Convers, 2, 59, 10.1016/0365-1789(62)90008-5

Iyore, 2009

Feng, 2011, Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods, Electrochim Acta, 56, 3079, 10.1016/j.electacta.2010.12.008

Carlson, 1960, Anisotropic diffusion of copper into bismuth telluride, J Phys Chem Solids, 13, 65, 10.1016/0022-3697(60)90127-X

Yu, 2008, The growth and roughness evolution of intermetallic compounds of Sn–Ag–Cu/Cu interface during soldering reaction, J Alloy Comp, 458, 542, 10.1016/j.jallcom.2007.04.047

Kumar, 2006, Influence of solid-state interfacial reactions on the tensile strength of Cu/electroless Ni–P/Sn–3.5Ag solder joint, Mater Sci Eng A, 423, 175, 10.1016/j.msea.2005.12.040

Sun, 2007, Study of interfacial reactions in Sn–3.5Ag–3.0Bi and Sn–8.0Zn–3.0Bi sandwich structure solder joint with Ni(P)/Cu metallization on Cu substrate, J Alloy Comp, 437, 169, 10.1016/j.jallcom.2006.07.121

Zhao, 2009, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, J Alloy Comp, 477, 425, 10.1016/j.jallcom.2008.10.037

Ren, 2015, 686

Jet Propulsion Laboratory California Institute of Technology, 2016

Guo, 2012, Evelopment of skutterudite thermoelectric materials and modules, J Electron Mater, 41, 1036, 10.1007/s11664-012-1958-0

Geng, 2013, Thermoelectric properties of multifilled skutterudites with La as the main filler, J Electron Mater, 42, 1999, 10.1007/s11664-013-2501-7

Jorge, 2013, Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications, J Electron Mater, 42, 136974

Zhao, 2012, Microstructure contact studies for skutterudite thermoelectric devices, Int J Appl Ceram Technol, 9, 733, 10.1111/j.1744-7402.2011.02703.x

Song, 2014, The effects of diffusion barrier layers on the microstructural and electrical properties in CoSb3 thermoelectric modules, J Alloy Comp, 617, 160, 10.1016/j.jallcom.2014.07.066

Chen, 2015, Interfacial reactions in Ni/CoSb3 couples at 450°C, J Alloy Comp, 632, 500, 10.1016/j.jallcom.2015.01.176

Chen, 2017, Interfacial reactions at the joints of CoSb3-based thermoelectric devices, J Alloy Comp, 699, 448, 10.1016/j.jallcom.2016.12.386

Li, 2016, Structure and failure mechanism of the thermoelectric CoSb3/TiCoSb interface, ACS Appl Mater Interfaces, 8, 31968, 10.1021/acsami.6b07320

Gu, 2014, Microstructural evolution of the interfacial layer in the Ti–Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature, J Alloy Comp, 610, 665, 10.1016/j.jallcom.2014.05.087

Shi, 2016, Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements, Surf Coating Technol, 285, 312, 10.1016/j.surfcoat.2015.11.057

Gu, 2017, Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints, Appl Sci, 7, 952, 10.3390/app7090952

Placha, 2018, Solid-liquid interdiffusion (SLID) bonding of p-type skutterudite thermoelectric material using Al-Ni interlayers, Materials, 11, 2483, 10.3390/ma11122483

Hasezaki, 1997, 599

Hasezaki, 1998, 460

Mondt, 1995, SP-100 space subsystems, 538

Bennett, 2006, 26

Lin, 1996, Funct Graded Mater Proc Int Conf, 599

Lin, 2000, One-step sintering of SiGe thermoelectric conversion unit and its electrodes, J Mater Res, 15, 647, 10.1557/JMR.2000.0096

Yang, 2016, Fabrication and contact resistivity of W–Si3N4/TiB2–Si3N4/p–SiGe thermoelectric joints, Ceram Int, 42, 8044, 10.1016/j.ceramint.2016.02.001

Zhang, 2018, Stable and low contact resistance electrical contacts for high temperature SiGe thermoelectric generators, Scripta Mater, 152, 36, 10.1016/j.scriptamat.2018.03.040

Weinstein, 1962, Bonding of lead telluride to pure iron electrodes, Rev Sci Instrum, 33, 1119, 10.1063/1.1717707

Xia, 2015, Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications, J Mater Sci, 50, 2700, 10.1007/s10853-015-8820-8

Zhang, 2017, Contact resistance and stability study for Au, Ti, Hf and Ni contacts on thin-film Mg2Si, J Alloy Comp, 699, 1134, 10.1016/j.jallcom.2016.12.229

Yang, 2017, Interfacial properties of Cu/Ni/Mg2Si joints prepared in one step by the spark plasma sintering method, J Alloy Comp, 704, 545, 10.1016/j.jallcom.2017.02.082

Cai, 2018, Duration of thermal stability and mechanical properties of Mg2Si/Cu thermoelectric joints, J Electron Mater, 47, 2591, 10.1007/s11664-018-6091-2

Iida, 2017, Silicide Modules: practical issue in developing Mg2Si with good stability for generating power from waste heat source, 697

Joshi, 2017, Half-heusler modules, 683

Shen, 2019, Low contact resistivity and interfacial behavior of p-type NbFeSb/Mo thermoelectric junction, ACS Appl Mater Interfaces

Hung, 2017, Oxide modules, 719

Gu, 2019, A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules, J Mater Res