Thermoelectric generators: A review of applications

Energy Conversion and Management - Tập 140 - Trang 167-181 - 2017
Daniel Champier1
1Univ Pau & Pays Adour, Laboratoire des Sciences de l'Ingénieur Appliquées à la Mécanique et au Génie Electrique-SIAME, Fédération IPRA, EA4581, Pau, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rowe David M. Chapter 1. Introduction. CRC Handbook of Thermoelectrics, D. M. Rowe; 1995.

Min, 2006

Goldsmid, 2010, Theory of Thermoelectric Refrigeration and Generation, vol. 121, 7

McCarty, 2013, Thermoelectric power generator design for maximum power: it’s all about ZT, J Electron Mater, 42, 1504, 10.1007/s11664-012-2299-8

Riffat, 2003, Thermoelectrics: a review of present and potential applications, Appl Therm Eng, 23, 913, 10.1016/S1359-4311(03)00012-7

Zheng, 2014, Thermoelectrics: a review of present and potential applications, Appl Therm Eng, 62, 69, 10.1016/j.applthermaleng.2013.09.008

Ahıska, 2014, A review: thermoelectric generators in renewable energy, IJRER, 4, 128

Hi-z.com – Home, n.d. <http://www.hi-z.com/> [accessed June 6, 2016].

Thermoelectric Generator (TEG) Modules|II-VI Marlow n.d. <http://www.marlow.com/power-generators/standard-generators.html> [accessed June 6, 2016].

Tecteg Power Generator - Tecteg Power Generator.com n.d. <http://tecteg.com/> [accessed June 6, 2016].

Thermonamic home page n.d. <http://www.thermonamic.com/> [accessed June 6, 2016].

Thermoelectric Modules|LairdTech n.d. <http://www.lairdtech.com/product-categories/thermal-management/thermoelectric-modules> [accessed June 6, 2016].

KELK Ltd. n.d. <http://www.kelk.co.jp/english/> [accessed June 6, 2016].

Quick ohm thermoelectric generator n.d. <http://www.quick-cool.com/> [accessed June 6, 2016].

Kryotherm, Home Page n.d. <http://www.kryotherm.com/index.html> [accessed June 6, 2016].

Gordon B, Haxel B, Hedrick JB, Orris GJ. Rare Earth Elements—Critical Resources for High Technology|USGS Fact Sheet 087-02 n.d. <http://pubs.usgs.gov/fs/2002/fs087-02/> [accessed November 20, 2015].

Chen, 2013, Recent progress of half-Heusler for moderate temperature thermoelectric applications, Mater Today, 16, 387, 10.1016/j.mattod.2013.09.015

LeBlanc, 2014, Material and manufacturing cost considerations for thermoelectrics, Renew Sustain Energy Rev, 32, 313, 10.1016/j.rser.2013.12.030

TEG-HH-8_module_spec_sheet n.d. <http://www.evidentthermo.com/> [accessed June 6, 2016].

TEG-HH-15_module_spec_sheet n.d. <http://www.evidentthermo.com> [accessed June 6, 2016].

Tegma n.d. <http://tegma.no/> [accessed June 6, 2016].

Tollefsen TA, Engvoll MA, Løvvik OM, Larsson A. Method for pre-processing semiconducting thermoelectric materials for metallization, interconnection and bonding; 2016.

tEcteg cmo-oxide-cmo-cascade-thermoelectric-power-modules n.d. <http://tecteg.com/cmo-oxide-cmo-cascade-800c-hot-side-thermoelectric-power-modules/> [accessed June 6, 2016].

MODULE TEG1-PB-12611-6.0 spec sheet n.d. <http://tecteg.com/wp-content/uploads/2015/01/TEG1-PB-12611-6.0_CBH-1-Final-November-17th-update.pdf> [accessed February 9, 2015].

Hotblock Onboard n.d. <http://www.hotblock.fr/> [accessed June 6, 2016].

Romny-scientific magnesium silicide modules n.d. <http://romny-scientific.com> [accessed June 6, 2016].

Alphabet Energy’s Thermoelectric Advances - Alphabet Energy n.d. <http://www.alphabetenergy.com/thermoelectric-advances/> [accessed June 6, 2016].

Green Car Congress: Alphabet Energy introduces PowerModules for modular thermoelectric waste heat recovery; partnership with Borla for heavy-duty trucks n.d. <http://www.greencarcongress.com/2015/06/20150624-alphabet.html> [accessed June 6, 2016].

Kim, 2013, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency, Nat Mater, 12, 719, 10.1038/nmat3635

Sun, 2012, Organic thermoelectric materials and devices based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s, Adv Mater, 24, 932, 10.1002/adma.201104305

Zhang, 2014, Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv Mater, 26, 6829, 10.1002/adma.201305371

Culebras, 2014, Review on polymers for thermoelectric applications, Materials, 7, 6701, 10.3390/ma7096701

Thermoelectric Generators (TEG) for Energy Harvesting Applications|otego n.d. <http://www.otego.de/en/> [accessed November 7, 2016].

Energy harvesting and storage | CDT Ltd n.d. <https://www.cdtltd.co.uk/technology-scope/energy-harvesting-and-storage/> [accessed November 7, 2016].

Nikolaenko, 2016

Aranguren, 2016, Optimized design for flexible polymer thermoelectric generators, Appl Therm Eng, 102, 402, 10.1016/j.applthermaleng.2016.03.037

Yu, 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Convers Manage, 50, 1506, 10.1016/j.enconman.2009.02.015

Maganga, 2014, Hardware implementation of maximum power point tracking for thermoelectric generators, J Electron Mater, 43, 2293, 10.1007/s11664-014-3046-0

Champier, 2013, Prototype combined heater/thermoelectric power generator for remote applications, J Electron Mater, 1

Phillip, 2013, Investigation of maximum power point tracking for thermoelectric generators, J Electron Mater, 42, 1900, 10.1007/s11664-012-2460-4

Kim, 2009, Analysis and design of maximum power point tracking scheme for thermoelectric battery energy storage system, IEEE Trans Industr Electron, 56, 3709, 10.1109/TIE.2009.2025717

Montecucco, 2012, Simple, fast and accurate maximum power point tracking converter for thermoelectric generators, 2777

Montecucco, 2015, Maximum power point tracking converter based on the open-circuit voltage method for thermoelectric generators, IEEE Trans Power Electron, 30, 828, 10.1109/TPEL.2014.2313294

Laird, 2013, High step-up DC/DC topology and MPPT algorithm for use with a thermoelectric generator, IEEE Trans Power Electron, 28, 3147, 10.1109/TPEL.2012.2219393

Laird, 2008, Comparative study of maximum power point tracking algorithms for thermoelectric generators, 1

Liu, 2016, A novel maximum power point tracker for thermoelectric generation system, Renewable Energy, 97, 306, 10.1016/j.renene.2016.05.001

Montecucco, 2014, Accurate simulation of thermoelectric power generating systems, Appl Energy, 118, 166, 10.1016/j.apenergy.2013.12.028

Montecucco, 2015, Constant heat characterisation and geometrical optimisation of thermoelectric generators, Appl Energy, 149, 248, 10.1016/j.apenergy.2015.03.120

Favarel, 2014, Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power, Energy, 68, 104, 10.1016/j.energy.2014.02.030

Yee, 2013, $ per W metrics for thermoelectric power generation: beyond ZT, Energy Environ Sci, 6, 2561, 10.1039/C3EE41504J

Cataldo RL, Bennett GL. U.S. space radioisotope power systems and applications: past, present and future, radioisotopes - applications in physical sciences; 2011.

Schwartz, 1965, Survey of electric power plants for space applications

Voyager, the interstellar mission n.d. <http://voyager.jpl.nasa.gov/spacecraft/index.html> [accessed September 24, 2015].

Spacecraft Power for Cassini - NASA fact sheet; 1999.

Radioisotope Thermoelectric Generator n.d. <http://solarsystem.nasa.gov/rps/rtg.cfm> [accessed September 24, 2015].

Caillat, 2006, Status of skutterudite-based segmented thermoelectric technology components development at JPL

Caillat, 2009, Advanced high-temperature thermoelectric devices

Fleurial, 2011, Advanced High Temperature Bulk Thermoelectric Materials

Alimov. Radioisotope Thermoelectric Generators - Bellona n.d. <http://bellona.ru/bellona.org/english_import_area/international/russia/navy/northern_fleet/incidents/31772> [accessed September 24, 2015].

Welcome to Gentherm Global Power Technologies | Gentherm Global Power Technologies n.d. <http://www.genthermglobalpower.com/> [accessed September 24, 2015].

Energy Flow Charts. Energy, Water, and Carbon Informatics Lawrence Livermore National Laboratory n.d. <https://flowcharts.llnl.gov/> [accessed December 4, 2015].

Brignonea, 2011, Impact of novel thermoelectric materials on automotive applications

Crane, 2012, Thermoelectric generator performance for passenger vehicles

Maranville, 2011, Overview of ford-DOE thermoelectric programs: waste heat recovery and climate control

Maranville, 2012

Mazar, 2012, State of the art prototype vehicle with a thermoelectric generator

Eder, 2011, Efficient and dynamic the BMW group roadmap for the application of thermoelectric generators

Meisner, 2012, Skutterudite thermoelectric generator for automotive waste heat recovery

Meisner, 2011, Advanced thermoelectric materials and generator technology for automotive waste heat at GM

Aixala, 2012, RENOTER Project

Aixala L, Monnet V. Conclusion of RENOTER project (Waste Heat Recovery for Trucks and Passenger Cars). In: Junsch D, editor. Thermoelectrics Goes Automotive II; 2012. p. 241–59.

Magnetto D. HeatReCar: first light commercial vehicle equipped with a TEG, Darmstadt; 2013.

Magnetto, 2012, Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks, AIP Conf Proc, 1449, 471, 10.1063/1.4731598

European Commission : CORDIS : Projects & Results Service : Final Report Summary – HEATRECAR (Reduced energy consumption by massive thermoelectric waste heat recovery in light-duty trucks) n.d. <http://cordis.europa.eu/result/rcn/58791_en.html> [accessed December 2, 2015].

Frobenius, 2015, Thermoelectric generators for the integration into automotive exhaust systems for passenger cars and commercial vehicles, J Electron Mater, 1

Brunetti M, Cogliati A, Iannucci D, Scandroglio A. Aircraft capable of hovering having an exhaust duct with thermoelectric conversion circuit. Google Patents; 2015.

Brillet C. Thermoelectric generation for a gas turbine. Google Patents; 2015.

Kwok DW, Huang JP, Skorupa JA, Smith JW. Thermoelectric generation system. Google Patents; 2009.

Kousksou, 2011, Numerical study of thermoelectric power generation for an helicopter conical nozzle, J Power Sources, 196, 4026, 10.1016/j.jpowsour.2010.12.015

Chabas J. European Commission : CORDIS : Projects & Results Service : Final Report Summary – THETAGEN (Thermoelectric generator for engine control system) n.d. <http://cordis.europa.eu/result/rcn/164433_en.html> [accessed December 15, 2015].

Wallace, 2011, Development of marine thermoelectric heat recovery systems

Kristiansen, 2012, Waste heat recovery from a marine waste incinerator using a thermoelectric generator, J Electron Mater, 41, 1024, 10.1007/s11664-012-2009-6

Kristiansen, 2010, Potential for usage of thermoelectric generators on ships, J Electron Mater, 39, 1746, 10.1007/s11664-010-1189-1

Wlodkowski P, Sarnacki P, Wallace T. A-Hybrid-Marine-Vessel-–-Supplemented-by-a-Thermoelectric-Generator-TEG-Power-System-–-as-a-Case-Study-for-Reducing-Emissions-and-Improving-Diesel-Engine-Efficiency.pdf n.d. <http://iamu-edu.org/wp-content/uploads/2014/07/A-Hybrid-Marine-Vessel-%E2%80%93-Supplemented-by-a-Thermoelectric-Generator-TEG-Power-System-%E2%80%93-as-a-Case-Study-for-Reducing-Emissions-and-Improving-Diesel-Engine-Efficiency.pdf> [accessed December 31, 2015].

Wallace T, Bailey M, Starbird N, Blackman A, Wallace C, Logus J, et al. Thermoelectric generator development efforts at the maine maritime academy. Thermoelectrics applications 2009; 2009.

Geradts K, Sonnleitner W. Operation of an internal combustion engine. Google Patents; 2013.

Kaibe, 2012, Thermoelectric generating system attached to a carburizing furnace at Komatsu Ltd., Awazu Plant, AIP Conf Proc, 1449, 524, 10.1063/1.4731609

Aranguren, 2014, Computational and experimental study of a complete heat dissipation system using water as heat carrier placed on a thermoelectric generator, Energy, 74, 346, 10.1016/j.energy.2014.06.094

Aranguren, 2015, Experimental investigation of the applicability of a thermoelectric generator to recover waste heat from a combustion chamber, Appl Energy, 152, 121, 10.1016/j.apenergy.2015.04.077

Kuroki, 2015, Research and development for thermoelectric generation technology using waste heat from steelmaking process, J Electron Mater, 44, 2151, 10.1007/s11664-015-3722-8

Kuroki, 2014, Thermoelectric generation using waste heat in steel works, J Electron Mater, 43, 2405, 10.1007/s11664-014-3094-5

Kajihara, 2015, Study of thermoelectric generation unit for radiant waste heat, Mater Today: Proceed, 2, 804, 10.1016/j.matpr.2015.05.104

Luo, 2015, A thermoelectric waste-heat-recovery system for Portland cement rotary kilns, J Electron Mater, 44, 1750, 10.1007/s11664-014-3543-1

Killander, 1996, A stove-top generator for cold areas, 390

IEA – Energy access database n.d. <http://www.worldenergyoutlook.org/resources/energydevelopment/energyaccessdatabase/> [accessed March 7, 2016].

Anozie, 2007, Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria, Energy, 32, 1283, 10.1016/j.energy.2006.07.004

Parikh, 2001, Exposure from cooking with biofuels: pollution monitoring and analysis for rural Tamil Nadu, India, Energy, 26, 949, 10.1016/S0360-5442(01)00043-3

Haines, 2007, Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change, The Lancet, 370, 1264, 10.1016/S0140-6736(07)61257-4

Brazil Background Study for a National Rural Electrification Strategy Aiming for Universal Access, March 2005 | ESMAP n.d. <http://www.esmap.org/node/338> [accessed March 8, 2016].

Nouni, 2008, Providing electricity access to remote areas in India: an approach towards identifying potential areas for decentralized electricity supply, Renew Sustain Energy Rev, 12, 1187, 10.1016/j.rser.2007.01.008

Nuwayhid, 2003, Low cost stove-top thermoelectric generator for regions with unreliable electricity supply, Renewable Energy, 28, 205, 10.1016/S0960-1481(02)00024-1

Nuwayhid, 2005, Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling, Energy Convers Manage, 46, 1631, 10.1016/j.enconman.2004.07.006

Nuwayhid, 2005, Design and testing of a locally made loop-type thermosyphonic heat sink for stove-top thermoelectric generators, Renewable Energy, 30, 1101, 10.1016/j.renene.2004.09.008

Lertsatitthanakorn, 2007, Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator, Bioresour Technol, 98, 1670, 10.1016/j.biortech.2006.05.048

Mastbergen, 2005, Generating light from stoves using a thermoelectric generator

Joshi, 2007, Field testing of stove-powered thermoelectric generators

Rogers, 2010, The Twig Light: Affordable, Sustainable Lighting for Villagers in Rural Ghana

Rinalde, 2010, Development of thermoelectric generators for electrification of isolated rural homes, Int J Hydrogen Energy, 35, 5818, 10.1016/j.ijhydene.2010.02.093

Molina, 2012, Design of innovative power conditioning system for the grid integration of thermoelectric generators, Int J Hydrogen Energy, 37, 10057, 10.1016/j.ijhydene.2012.01.177

O’Shaughnessy, 2013, Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results, Appl Energy, 102, 374, 10.1016/j.apenergy.2012.07.032

O’Shaughnessy, 2014, Field trial testing of an electricity-producing portable biomass cooking stove in rural Malawi, Energy Sustain Develop, 20, 1, 10.1016/j.esd.2014.01.009

O’Shaughnessy, 2015, Performance analysis of a prototype small scale electricity-producing biomass cooking stove, Appl Energy, 156, 566, 10.1016/j.apenergy.2015.07.064

O’Shaughnessy, 2015, Adaptive design of a prototype electricity-producing biomass cooking stove, Energy Sustain Develop, 28, 41, 10.1016/j.esd.2015.06.005

Champier D, Rivaletto M, Strub F. TEGBioS :a prototype of thermoelectric power generator for biomass stoves. In: ECOS 2009, 22nd Internacional conference on efficiency, cost, optimization, simulation, and environmental impact of energy systems; 2009.

Champier, 2010, Thermoelectric power generation from biomass cook stoves, Energy, 35, 935, 10.1016/j.energy.2009.07.015

Champier, 2011, Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove, Energy, 36, 1518, 10.1016/j.energy.2011.01.012

Favarel, 2015, Thermoelectricity a promising complementary with efficient stoves in off grid areas, J Sustain Develop Energy, Water Environ Syst, 256, 10.13044/j.sdewes.2015.03.0020

Najjar, 2016, Heat transfer and performance analysis of thermoelectric stoves, Appl Therm Eng, 102, 1045, 10.1016/j.applthermaleng.2016.03.114

Lertsatitthanakorn, 2014, Study of combined rice husk gasifier thermoelectric generator, Energy Procedia, 52, 159, 10.1016/j.egypro.2014.07.066

Mal R, Prasad R, Vijay VK, Verma AR, Tiwari R. Self – energy generating cookstove. Emerging Energy Technology Perspectives – A Sustainable Approach; 2014.

Mal, 2014, Thermoelectric power generator intagrated cookstove : a sustainable approach of waste heat to energy conversion. ICAESA 2014, vol. 3, IJRET: International Journal of Research, Eng Technol

Biolite; 2015. <http://biolitestove.com/> [accessed September 25, 2015].

Gao, 2016, Development of stove-powered thermoelectric generators: a review, Appl Therm Eng, 96, 297, 10.1016/j.applthermaleng.2015.11.032

Friedl, 2009, Micro-CHP Experiences with thermoelectric generators integrated in a wood pellet combustion unit

Hoftberger, 2010, Grid autarchy of automated pellets combustion systems by the means of thermoelectric generators, Konferenz Automotive Goes Thermoelectrics

Friedl, 2010, Evaluating the transient behaviour of biomass based micro-chp systems – steam piston engine and integrated thermoelectric power generation

Montecucco, 2015, A combined heat and power system for solid-fuel stoves using thermoelectric generators, Energy Procedia, 75, 597, 10.1016/j.egypro.2015.07.462

Alanne, 2014, Analysis of a wooden pellet-fueled domestic thermoelectric cogeneration system, Appl Therm Eng, 63, 1, 10.1016/j.applthermaleng.2013.10.054

Ecofan - Caframo Lifestyle Solutions; 2016. <http://www.caframolifestylesolutions.com/ecofan/> [accessed March 17, 2016].

Fuel Usage Title Page-5 – Studie_Energieeinsparung_Ecofan_komplett.pdf; 2010. <http://www.ecofan.ch/pdf/Studie_Energieeinsparung_Ecofan_komplett.pdf> [accessed March 17, 2016].

Codecasa, 2011, Design and development of a TEG cogenerator device integrated in self standing gas heaters

Codecasa, 2012, Design and development of a thermoelectric cogeneration device integrated in autonomous gas heaters, AIP Conf Proc, 1449, 512, 10.1063/1.4731606

Codecasa, 2015, Design and development of a TEG cogenerator device integrated into a self-standing natural combustion gas stove, J Electron Mater, 44, 377, 10.1007/s11664-014-3297-9

Zheng, 2014, Experimental study of a domestic thermoelectric cogeneration system, Appl Therm Eng, 62, 69, 10.1016/j.applthermaleng.2013.09.008

Micropelt. Micropelt thermoelectric generators MPG-D751. n.d.

Nextreme Laird. Microscale Thermal and Power Management n.d. <http://www.lairdtech.com/products/thermobility-wpg-1> [accessed May 31, 2016].

Perpetua Power Source Technologies, Inc. | Energy harvesting solutions n.d. <http://perpetuapower.com/> [accessed June 1, 2016].

Emerson Process Management - Wireless Power Module | Smart Wireless Battery | Emerson n.d. <http://www2.emersonprocess.com/en-us/brands/rosemount/wireless/smartpower-solutions/pages/index.aspx> [accessed June 1, 2016].

Perpetua_power_puck_energy_harvesters_factsheet.pdf n.d. <https://www.gemeasurement.com/sites/gemc.dev/files/perpetua_power_puck_energy_harvesters_factsheet.pdf> [accessed June 1, 2016].

ABB. Moisson énergétique Capteur de temperature autonome n.d. <https://library.e.abb.com/public/c901f23cbe6d7828c1257988005d6f79/47-51%201m102_FRA_72dpi.pdf> [accessed June 1, 2016].

Wang, 2013, Thermoelectric energy harvesting for building energy management wireless sensor networks, Int J Distrib Sens Netw, 2013, 14

Samson, 2010, Aircraft-specific thermoelectric generator module, J Electron Mater, 39, 2092, 10.1007/s11664-009-0997-7

Samson, 2012, Flight test results of a thermoelectric energy harvester for aircraft, J Electron Mater, 41, 1134, 10.1007/s11664-012-1928-6

Kiziroglou, 2011, Optimization of heat flow for phase change thermoelectric harvesters, 454

Elefsiniotis, 2013, Efficient power management for energy-autonomous wireless sensor nodes for aeronautical applications, J Electron Mater, 42, 1907, 10.1007/s11664-012-2468-9

Elefsiniotis, 2013, Investigation of the performance of thermoelectric energy harvesters under real flight conditions, J Electron Mater, 42, 2301, 10.1007/s11664-012-2411-0

Elefsiniotis, 2014, A thermoelectric-based energy harvesting module with extended operational temperature range for powering autonomous wireless sensor nodes in aircraft, Sens Actuators, A, 206, 159, 10.1016/j.sna.2013.11.036

Elefsiniotis, 2014, Thermoelectric energy harvesting using phase change materials (PCMs) in high temperature environments in aircraft, J Electron Mater, 43, 1809, 10.1007/s11664-013-2880-9

Elefsiniotis, 2015, A novel high-temperature aircraft-specific energy harvester using PCMs and state of the art {TEGs}, Mater Today: Proceed, 2, 814, 10.1016/j.matpr.2015.05.105

Shi, 2014, A novel self-powered wireless temperature sensor based on thermoelectric generators, Energy Convers Manage, 80, 110, 10.1016/j.enconman.2014.01.010

Xie, 2016, Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter, Appl Energy, 164, 620, 10.1016/j.apenergy.2015.12.036

Leonov, 2010, Hybrid thermoelectric-photovoltaic generators in wireless electroencephalography diadem and electrocardiography shirt, J Electron Mater, 39, 1674, 10.1007/s11664-010-1230-4

Leonov, 2012, Thermoelectric generator hidden in a shirt with a fabric radiator, AIP Conf Proc, 1449, 556, 10.1063/1.4731617

Lossec, 2010, Thermoelectric generator placed on the human body: system modeling and energy conversion improvements, Eur Phys J Appl Phys, 52, 11103, 10.1051/epjap/2010121

Siddique, 2014, Body heat thermoelectric energy harvesting for self-powered wearable electronics, ICST

Dziurdzia P, Brzozowski I, Bratek P, Gelmuda W, Kos A. Estimation and harvesting of human heat power for wearable electronic devices. IOP Conference Series: Materials Science and Engineering, vol. 104; 2016. http://dx.doi.org/10.1088/1757-899X/104/1/012005.

Torfs, 2008, 1269

Van Bavel M, Leonov V, Yazicioglu RF, Torfs T, Van Hoof C, Posthuma N, et al. Wearable battery-free wireless 2-channel EEG systems powered by energy scavengers, vol. 94 Issue 7; 2008. p. 103–15.

Leonov, 2009, Thermal matching of a thermoelectric energy harvester with the environment and its application in wearable self-powered wireless medical sensors, 95

Kraemer, 2011, High-performance flat-panel solar thermoelectric generators with high thermal concentration, Nat Mater, 10, 532, 10.1038/nmat3013

McEnaney, 2011, Modeling of concentrating solar thermoelectric generators, J Appl Phys, 110, 10.1063/1.3642988

Kraemer, 2012, Modeling and optimization of solar thermoelectric generators for terrestrial applications, Sol Energy, 86, 1338, 10.1016/j.solener.2012.01.025

Baranowski, 2012, Concentrated solar thermoelectric generators, Energy Environ Sci, 5, 9055, 10.1039/c2ee22248e

Chen, 2014, Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator, Energy, 64, 287, 10.1016/j.energy.2013.10.073

Kossyvakis, 2015, Computational analysis and performance optimization of a solar thermoelectric generator, Renewable Energy, 81, 150, 10.1016/j.renene.2015.03.026

Lertsatitthanakorn, 2008, Performance analysis of a double-pass thermoelectric solar air collector, Sol Energy Mater Sol Cells, 92, 1105, 10.1016/j.solmat.2008.03.018

Lertsatitthanakorn, 2014, Electricity generation from a solar parabolic concentrator coupled to a thermoelectric module, Energy Procedia, 52, 150, 10.1016/j.egypro.2014.07.065

Özdemir, 2015, The experimental design of solar heating thermoelectric generator with wind cooling chimney, Energy Convers Manage, 98, 127, 10.1016/j.enconman.2015.03.108

He, 2011, Parametrical analysis of the design and performance of a solar heat pipe thermoelectric generator unit, Appl Energy, 88, 5083, 10.1016/j.apenergy.2011.07.017

He, 2012, A study on incorporation of thermoelectric modules with evacuated-tube heat-pipe solar collectors, Renewable Energy, 37, 142, 10.1016/j.renene.2011.06.002

Chávez-Urbiola, 2012, Solar hybrid systems with thermoelectric generators, Sol Energy, 86, 369, 10.1016/j.solener.2011.10.020

Chávez Urbiola, 2013, Investigation of solar hybrid electric/thermal system with radiation concentrator and thermoelectric generator, Int J Photoenergy, 10.1155/2013/704087

Bjørk, 2015, The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system, Sol Energy, 120, 187, 10.1016/j.solener.2015.07.035

Attivissimo, 2015, Feasibility of a photovoltaic thermoelectric generator: performance analysis and simulation results, Instrum Measur, IEEE Transact, 64, 1158, 10.1109/TIM.2015.2410353

Makki, 2016, Numerical investigation of heat pipe-based photovoltaic–thermoelectric generator (HP-PV/TEG) hybrid system, Energy Convers Manage, 112, 274, 10.1016/j.enconman.2015.12.069

Remeli, 2016, Experimental investigation of combined heat recovery and power generation using a heat pipe assisted thermoelectric generator system, Energy Convers Manage, 111, 147, 10.1016/j.enconman.2015.12.032