Thermoelectric and Elastic Properties of Carbon Nanotubes Irradiated with High-Energy Electrons

Inorganic Materials: Applied Research - Tập 10 - Trang 1052-1057 - 2019
G. Yu. Mikhailova1, M. M. Nishchenko1, V. N. Pimenov2, E. E. Starostin2, V. I. Tovtin2
1Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Abstract—The electrical conductivity, thermo-emf, and elasticity coefficient were experimentally studied in multilayered carbon nanotubes (CNTs) exposed to room-temperature irradiation. The initial CNTs with dimensions of 18 ± 7 nm were obtained via chemical vapor deposition using propane–butane as precursor. The irradiation of CNTs was implemented on Mikrotron-ST cyclic electron accelerator at the energy of 21 MeV and electron doses of 0.3 × 1017, 0.7 ×1017, 1.1 ×1017, and 1.5 × 1017 cm–2. The characteristics of initial and irradiated samples were measured in a dielectric cylinder. The following critical parameters of dielectric–metal transition in CNTs were established: array density (ρ1), elastic strain of CNT (ρrel), maximum electrical conductivity (σmax), and elastic strain coefficient (ε). The irradiated CNTs exhibit a decrease in thermo-emf (Seebeck coefficient (α)) by 50% or more in comparison with the initial samples, which is due to the formation of radiation defects.

Tài liệu tham khảo

Hayamizu, Y., Davis, R.C., Yamada, T., Futaba, D.N., Yasuda, S., Yumura, M., and Hata, K., Mechanical properties of beams from self-assembled closely packed and aligned single-walled carbon nanotubes, Phys. Rev. Lett., 2009, vol. 102, no. 17, pp. 175505–175505-4. Pogosov, V.V., Kunits’kii, Yu.A., Babich, A.V., and Korotun, A.V., Elementy fiziki poverhni nanostruktur i technologi (Elements of Surface Physics of Nanostructures and Technology), Zaporozhye: Zaporozh. Nats. Tekh. Univ., 2010. Sinitsyn, N.I., Gulyaev, Yu.V., and Devyatkov, N.D., Carbon nanocluster structures as one of materials for prospective emission electronics, Radiotekhnika, 2000, no. 2, pp. 9–18. Azarenko, N.A., Beresnev, V.M., Pogrebnyak, A.D., and Malikov, L.V., Nanomaterialy, nanopokrytiya, nanotechnologii (Nanomaterials, Nanocoatings, and Nanotechnologies), Kharkov: Khar’k. Nats. Univ. im. V.N. Karazina, 2009. Fan, Y.W., Goldsmith, B.R., and Collins, P.G., Identifying and counting point defects in carbon nanotubes, Nat. Mater., 2005, vol. 4, pp. 906–951. Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., Atomistic simulations of irradiation effects in carbon nanotubes: an overview, Radiat. Eff. Defects Solids, 2007, vol. 162, nos. 3–4, pp. 157–169. Wilkins, R., Pulikkathara, M.X., Khabashesku, V.N., et al., Ground-based space radiation effects studies on single-walled carbon nanotube materials, Proc. Materials Research Society Symp. “Materials for Space Applications,” Warrendale, PA: Mater. Res. Soc., 2005, vol. 25, p. 267. Anikeyev, V.V., Kovalchuk, B.V., Lazorenko, V.M., Mikhaylova, G.Yu., Nishchenko, M.M., Pimenov, V.N., Prikhodko, G.P., Sadykhov, S.I.O., and Tovtin, V.I., Effect of electron irradiation on the formation and healing of defects in carbon nanotubes, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 2, pp. 204–209. Chico, L., Benedict, L.X., Louie, S.G., and Cohen, M.L., Quantum conductance of carbon nanotubes with defects, Phys. Rev. Lett., 1996, vol. 54, no. 4, pp. 2600–2606. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Tunneling conductance of connected carbon nanotubes, Phys. Rev. B, 1996, vol. 53, no. 4, pp. 2044–2050. Nishchenko, M.M., Mihailova, G.Yu, Arkhipov, E.I., Koda, V.Yu., Prikhod’ko, G.P., and Sementsov, Yu.I., Electrical conductivity of an array of multi-walled carbon nanotubes in the process of deformation by compression, Metallofiz. Nov. Tekhnol., 2009, vol. 31, no. 4, pp. 437–443. Nishchenko, M.M., Mikhaylova, G.Yu, Aznakaeva, D.E., and Lisunova, Yu.A., Cyclic strain effect on the electrical conductivity of a carbon array nanotubes, Metallofiz. Nov. Tekhnol., 2011, vol. 33, no. 10, pp. 1153–1160. Blatt, F.J., Schroeder, P.A., Foiles, C.L., and Greig, D., Thermoelectric Power of Metals, New York: Springer-Verlag, 1976. De Jonge, N. and Bonard, J.M., Carbon nanotube electron sources and applications, Philos. Trans. R. Soc., A, 2004, vol. 362, pp. 2239–2266. Shevel’kov, A.V., Chemical aspects of the design of thermoelectric materials, Russ. Chem. Rev., 2008, vol. 77, no. 1, pp. 1–19. Makunin, A.V. and Chechenin, N.G., Polimer-nanouglerodnye kompozity dlya kosmicheskikh tekhnologii. Chast’ 1. Sintez i svoistva nanouglerodnykh struktur (Polymer Nanocarbon Composites for Space Technologies, Part 1: Synthesis and Properties of Nanocarbon Structures), Moscow: Universitetskaya Kniga, 2011. Ackland, G., Controlling radiation damage, Science, 2010, vol. 327, pp. 1587–1588. Novikov, L.S., Radiatsionnye vozdeistviya na materialy kosmicheskoi tekhniki (Radiation Effects on the Materials for Space Equipment), Moscow: Universitetskaya Kniga, 2010. Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., and Nieminen, R.M., Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes, Phys. Lett., 2006, vol. 418, pp. 132–136. Anikeev, V.V., Koval’chuk, B.V., Lazorenko, V.M., Mikhailova, G.Yu., Nishchenko, M.M., Pimenov, V.N., Sidorchenko, I.M., Suskaya, Yu.F., and Tovtin, V.I., Electrical and elastic properties of an array of carbon nanotubes after irradiation by high-energy electrons, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 2, pp. 138–142. Ivanov, L.I., Lazorenko, V.M., Mikhailova, G.Yu., Nishchenko, M.M., Platov, Yu.M., Sadykhov, S.I.O., and Tovtin, V.I., The influence of high-energy electrons on the electrical conductivity and the defects of multilayer carbon nanotubes, Perspekt. Mater., 2013, no. 1, pp. 48–52. Anatychuk, L.I., Termoelementy i termoelektricheskie ustroistva (Thermoelements and Thermoelectric Devices), Kiev: Naukova Dumka, 1979. Kotakoski, J., Krasheninnikov, A.V., and Nordlung, K., Kinetic Monte Carlo simulations of the response of carbon nanotubes to electron irradiation, J. Comput. Theor. Nanosci., 2007, vol. 4, pp. 1153–1159. Novikov, L.S. and Voronina, E.N., Specific simulation of radiation effect on nanostructures, Trudy XIII Mezhvuzovskoi nauchnoi shkoly molodykh spetsialistov “Kontsentrirovannye potoki energii v kosmicheskoi tekhnike, elektronike, ekologii i meditisne,” Moskva, 19–20 noyarbya 2012 g. (Proc. XIII Interinstitutional Scientific Workshop of Young Professionals “Concentrated Flows of Energy in Space Engineering, Electronics, Ecology, and Medicine,” Moscow, November 19–20, 2012), Moscow: Nauchno-Issled. Inst. Yad. Fiz., Mosk. Gos. Univ., 2012, pp. 133–141. Miko, Cs., Milas, M., Seo, J.W., Couteau, E., Baris, N., and Gaa, R., Effect of electron irradiation on the electrical properties of fibers of aligned single-walled carbon nanotubes, Appl. Phys. Lett., 2003, vol. 83, no. 22, pp. 4622–4624.