Thermoelectric Transport Properties of Interface-Controlled p-type Bismuth Antimony Telluride Composites by Reduced Graphene Oxide
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)
Goldsmid, H.J., Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954)
Goldsmid, H.J.: Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 7, 2577 (2014)
Scherrer, H., Scherrer, S.: Thermoelectric properties of bismuth antimony telluride solid solutions. In: Rowe, D.M. (ed.) Thermoelectrics Handbook: Macto to Nano, vol. 27. CRC Press, Boca Raton (2006)
Yim, W.M., Rosi, F.D.: Compound tellurides and their alloys for Peltier cooling—a review. Solid State Electron. 15, 1121 (1972)
Hao, F., Qiu, P., Tang, Y., Bai, S., Xing, T., Chu, H.-S., Zhang, Q., Lu, P., Zhang, T., Ren, D., Chen, J., Shi, X., Chen, L.: High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 °C. Energy Environ. Sci. 9, 3120 (2016)
Hu, L.-P., Zhu, T.-J., Wang, Y.-G., Xie, H.-H., Xu, Z.-J., Zhao, X.-B.: Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, e88 (2014)
Lim, Y.S., Song, M., Lee, S., An, T.-H., Park, C., Seo, W.-S.: Enhanced thermoelectric properties and their controllability in p-type (BiSb)2Te3 compounds through simultaneous adjustment of charge and thermal transports by Cu incorporation. J. Alloys Compd. 687, 320 (2016)
Wu, F., Wang, W., Hu, X., Tang, M.: Thermoelectric properties of I-doped n-type Bi2Te3-based material prepared by hydrothermal and subsequent hot pressing. Prog. Nat. Sci. 27, 203 (2017)
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)
Ko, J., Kim, J.Y., Choi, S.M., Lim, Y.S., Seo, W.S., Lee, K.H.: Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets. J. Mater. Chem. A 1, 12791 (2013)
Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, Jz`W, Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W.: Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 348, 109 (2015)
Hong, M., Chasapis, T.C., Chen, Z.-G., Yang, L., Kanatzidis, M.G., Snyder, G.J., Zou, J.: n-type Bi2Te3−xSex nanoplates with enhanced thermoelectric efficiency driven by wide-frequency phonon scatterings and synergistic carrier scatterings. ACS Nano 10, 4719 (2016)
Pan, Y., Li, J.-F.: Thermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure. NPG Asia Mater. 8, e275 (2016)
Chen, D., Zhao, Y., Chen, Y., Wang, B., Chen, H., Zhou, J., Liang, Z.: One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications. ACS Appl. Mater. Interfaces 7, 3224 (2015)
Shin, W.H., Ahn, K., Jeong, M., Yoon, J.S., Song, J.M., Lee, S., Seo, W.-S., Lim, Y.S.: Enhanced thermoelectric performance of reduced graphene oxide incorporated bismuth–antimony–telluride by lattice thermal conductivity reduction. J. Alloys Compd. 718, 342 (2017)
Nam, W.H., Lim, Y.S., Kim, W., Seo, H.K., Dae, K.S., Lee, S., Seo, W.-S., Lee, J.Y.: A gigantically increased ratio of electrical to thermal conductivity and synergistically enhanced thermoelectric properties in interface-controlled TiO2–RGO nanocomposites. Nanoscale 9, 7830 (2017)
Zong, P., Hanus, R., Dylla, M., Tang, Y., Liao, J., Zhang, Q., Snyder, G.J., Chen, L.: Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device. Energy Environ. Sci. 10, 183 (2017)
Lee, S.T., Lim, Y.S.: Effects of interface control using reduced graphene oxide (RGO) on the thermoelectric transport properties of polycrystalline SnSe compounds. Korean J. Met. Mater. 56, 163 (2018)
González, A., Goikolea, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: technologies and materials. Renew. Sustain. Energy Rev. 58, 1189 (2016)
Kucinskis, A., Bajars, G., Kleperis, J.: Graphene in lithium ion battery cathode materials: a review. J. Power Sources 240, 66 (2013)
Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A., Xie, J.: Graphene in photocatalysis: a review. Small 12, 6640 (2016)
Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282 (2006)
Watcharotone, S., Dikin, D.A., Stankovich, S., Piner, R., Jung, I., Dommett, G.H.B., Evmenenko, G., Wu, S.-E., Chen, S.-F., Liu, C.-P., Nguyen, S.T., Ruoff, R.S.: Graphene–silica composite thin films as transparent conductors. Nano Lett. 7, 1888 (2007)
Fan, Y., Jiang, W., Kawasaki, A.: Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type. Nano Lett. 22, 3882 (2012)
Nam, W.H., Kim, B.B., Seo, S.G., Lim, Y.S., Kim, J.-Y., Seo, W.-S., Choi, W.K., Park, H.J., Lee, J.Y.: Structurally nanocrystalline-electrically single crystalline ZnO reduced graphene oxide composites. Nano Lett. 14, 5104 (2014)
Zong, P.A., Chen, X.H., Zhu, Y.W., Liu, Z.W., Zeng, Y., Chen, L.: Construction of a 3D-rGO network-wrapping architecture in a YbyCo4Sb12/rGO composite for enhancing the thermoelectric performance. J. Mater. Chem. A 3, 8643 (2015)
Porwal, H., Grasso, S., Mani, M.K., Reece, M.J.: In situ reduction of graphene oxide nanoplatelet during spark plasma sintering of a silica matrix composite. J. Eur. Ceram. Soc. 34, 3357 (2014)
Zuev, Y., Chang, W., Kim, P.: Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 096807 (2009)
Sidorov, A.N., Sherehiy, A., Jayasinghe, R., Stallard, R., Benjamin, D.K., Yu, Q., Liu, Z., Wu, W., Cao, H., Chen, Y.P., Jiang, Z., Sumanasekera, G.U.: Thermoelectric power of graphene as surface charge doping indicator. Appl. Phys. Lett. 99, 013115 (2011)
An, T.-H., Lim, Y.S., Park, M.J., Tak, J.-Y., Lee, S., Cho, H.K., Cho, J.-Y., Park, C., Seo, W.-S.: Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2−xSbxTe3 compounds. APL Mater. 4, 104812 (2016)
Lim, Y.S., Lee, S.: Effects of Sb on the charge transport and power factor of Bi2−xSbxTe3 thermoelectric compounds prepared by hot pressing. Korean J. Met. Mater. 55, 651 (2017)
Narenda, N., Kim, K.W.: Toward enhanced thermoelectric effects in Bi2Te3/Sb2Te3 heterostructures. Semicond. Sci. Technol. 32, 035005 (2017)
Sehr, R., Testardi, L.R.: The optical properties of p-type Bi2Te3–Sb2Te3 alloys between 2–15 microns. J. Phys. Chem. Solids 23, 1219 (1962)
Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975)