Thermodynamics of some ZrO2-containing ceramics

Journal of Shanghai University (English Edition) - Tập 10 - Trang 65-73 - 2006
Lin Li1, Biest Van der Omer2, Shui-gen Huang1,2, Vleugels Jef2, Pei-ling Wang3
1School of Materials Science and Engineering, Shanghai University, Shanghai, P.R. China
2Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Heverlee, Belgium
3The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, P. R. China

Tóm tắt

Thermodynamic assessment in the ternary systems ZrO2-CeO2-Y2O2 , ZrO2-CeO2-Ce2O3 and the limiting binaries ZrO2-Y2O3, ZrO2-CeO2 ,CeO2-Y2O2, ZrO2-Ce2O3, CeO2-Ce2O3 as well as the modeling for oxides are reviewed comprehensively. Based on the recent estimations on the YO1,5-CeO2, ZrO2-CeO2 and ZrO2-YO1,5 systems, isothermal sections at 1 273 and 1 973 K of the ternary CeO2-ZrO2-YO1,5 system are calculated. In the system of ZrO2-CeO2-Ce2O3, the complex relation between the nonstoichiometry (y) in CeO−y , the composition of the ZrO2-CeO2 solid solution and the oxygen partial pressure (P o 2) for different ZrO2 containing solid solutions Ce2Zri2−y are evaluated from 1 473 to 1 773 K. The relation between the degree of Ce+4 reduction to Ce+3 under different P 0 2 in the fluorite CeO2−y and Ce z Zr1−z O2−x solid solutions at different temperatures can be used as a guide in the development of functional ceramics.

Tài liệu tham khảo

Piconi C, Maccauro G. Zirconia as a ceramic biomaterial [J]. Biomaterials, 1999, 20: 1–25. Hannink R H J, Kelly P M, Muddle B C. Transformation toughening in zirconia-containing ceramics [J]. J. Am. Ceram. Soc., 2000, 83(3): 461–87. Chevalier J, Cales B, Drouin J M. Low-temperature aging of Y-TZP ceramics[J]. J. Am. Ceram. Soc., 1999, 82 (8): 2150–2154. Sato T, Ohtaki S, Endo T, et al. Improvement of thermal-stability of yttria-doped tetragonal zirconia polycrystals by doping CeO2 on the surface [J]. Journal of Materials Science Letters, 1986, 5(11): 1140–1142. Heussner K-H, Claussen N. Strengthening of ceria-doped tetragonal zirconia poly crystals by reduction-induced phase transformation[J]. J. Am. Ceram. Soc., 1989, 72: 1044–1046. Longo V, Podda L. Phase diagram of Y2O3-CeO2 system [J]. Ceramica, 1984, 37(5): 18–18. Hinatsu Y, Muromura T. Phase-relations in the systems ZrO2-Y2O3-Nd2O3 and ZrO2-Y2O3-CeO2 [J]. Mater. Res. Bull., 1986, 21(11): 1343–1349. Khan N, Leach C. Stability of zirconia-ceria-yttria ceramics in hostile[J]. Journal of Materials Science, 1991, 26 (8): 2026–2030. Du Y, Jin Z P. Optimization and calculation of the ZrO2-MgO system[J]. CALPHAD, 1991, 15(1): 59–68. Du Y, Jin Z P, Huang P Y. Thermodynamic assessment of the ZrO2-YO1.5 system [J]. J. Am. Ceram. Soc., 1991, 74(7): 1569–1577. Du Y, Jin Z P, Huang P Y. Thermodynamic calculation of the ZrO2-YO1.5-MgO system[J]. J. Am. Ceram. Soc, 1991, 74(9): 2107–2112. Li L, Hsu T Y, AO Q. Optimization of the phase diagram of CeO2-ZrO2 system [J]. J. Mater. Sci. Technol., 1996, 12(2):159–160. Li Lin, Biest O V D, WANG Pei-ling. Application of substitutional model in oxide systems[J]. J. Mater. Sci. & Technol., 2003, 19(1): 66. La Lin, Huang Shui-gen, XU Luo-ping, et al. Prediction of the isothermal sections of the ZrO2-Y2O3-CeO2 system [J]. J. Mater. Sci: & Technol., 2001, 17(5): 529. Li Lin, Biest O V D, Wang Pei-ling, et al. Estimation of the phase diagram in the ZrO2-Y2O3-CeO2 system[J]. J. European Ceramics Society, 2001, 21: 2903–2910. Huang Shui-gen, Li Lin, Wang Pei-ling. Estimation of the phase diagram of ZrO2-Y2O3-CeO2 system[J]. J. Shanghai University, 2000, 6(4): 303 (in Chinese). Huang Shui-gen, Li Lin, Biest O V D, et al. Thermodynamic assessment of the ZrO2-CeO2 and ZrO2-CeO1.5 binary system [J]. J. Mater. Sci. & Technol., 2002, 18 (4): 325–327. Huang Shui-gen, Li Lin, Biest O V D, et al. Thermodynamic prediction of nonstoichiometry phase 〈Zr1−z Ce z O 2−x 〉 in ZrO2-CeO1.5-CeO2 system[J]. J. European Ceramics Society, 2003, 23: 99. Huang Shui-gen, Li Lin, Biest O V D, et al. Study of thermodynamic properties of nonstoichiometry phase 〈Zr1−z Ce z O2−x 〉 with compound energy model [J]. J. Mater. Sci. & Technol., 2002, 18(5): 422–426. Jordan A S. Calculation of phase diagram and thermochemistry of alloy phases[J]. TMS-AIME, 1979, 100. Sommer F. Alloy phase diagrams[A]. Bennett L H, Massalski T B, Giessen B C, eds., MRS Symposia Proc. [C]. North-Holland, 1983, 19: 163. Hillert M, Staffansson L-I. The regular solution model for stoichiometric phases and ionic melts [J]. Acta Chemica Scandinavica, 1970, 24: 3618–3626. Guillermet A F, Hillert M, Jasson B, et al. An assessment of the Fe-S system using a two-sublattice model for the liquid phase[J]. Metall. Trans., 1981, 12B: 745–754. Kaufman L, Nesor H. Calculation of quasibinary and quasiternary oxide systems [J]. CALPHAD, 1978, 1 (2): 35–53. Hillert M. Regular solution model for stoichiometric phases and ionic melts [J]. Acta Chemica Scandinavica, 1970, 24: 3618. Lukas H L, Hening E Th, Zimmermann B. Optimization of phase diagrams by a least squares method using simultaneously different types of data[J]. CALPHAD, 1977, 1: 225–236. Thermo-Calc Software AB. Thermo-Calc User’s Guide [M]. Version N, Thermo-Calc Software AB, Sweden, 2001. Rouanet A. Solidification diagrams and high temperature phase diagrams of zirconia-erbium oxide zirconia-yttrium oxide and zirconia-ytterbium oxide systems [J]. C. R. Seances Acad. Sci., Ser., 1968, 267(23): 1581. Stubican V S, Hink R C, Ray S P. Phase-equilibria and ordering in system ZrO2-Y2O3 [J]. J. Am. Ceram. Soc., 1978, 61(1–2): 17. Noguchi T. Liquidus curve of ZrO2-Y2O3 system as measured by a solar furnace[J]. Bulletin of the Chemical Society of Japan, 1970, 43: 2614. Srivastava K K, Patil R N, Choudhary C B, et al. Revised phase-diagram of system ZrO2-YO1.5 [J]. Trans. J. Br. Ceram. Soc, 1974, 73(2): 85–91. Stubican V S. Advances in ceramics [J]. Am. Ceram. Soc, Columbus, O H, 1988, 24: 71. Nakamura K, Hirano S, Somiya S. Ceramics, 1975, 83 (12): 570. Longo V, Podda L. Phase-equilibrium diagram of the system ceria-yttria for temperatures between 900-degrees-C and 1700-degrees-C[J]. J. Mater. Soc, 1981, 16(3): 839–841. Yashima M, Takshina H, Kakihana M, et al. Low-temperature phase-equilibria by the flux method and the metastable-stable phase-diagram in the ZrO2-CeO2 system [J]. J. Am. Ceram. Soc., 1994, 77(7): 1869. Tani E, Yoshimura M. Somiya S. Revised phase-diagram of the system ZrO2-CeO2 below 1400- degrees- C [J]. J. Am. Ceram. Soc, 1983, 66: 506. Tani E, Yoshimura M, Somiya S. Ceramics, 1982, 90: 195. Ondik H M, McMurdie H F. Phase Diagrams for Zirconium+Zirconia Systems [M]. Am. Ceram. Soc., Ohio, 1998, 100. Leonov AI, Keler E K, Andreeva AB. Izv. Akad. Nauk SSSR[J]. Inorg. Mater., 1966, 2: 1047–1049. Campserveux J, Gerdanian P. Etude thermodynamique de I’ oxyde CeO2−x pour 1.5<O/Ce<2 [J]. J. Solid State Chem., 1978, 23: 73–92. Lindemer T B, Brynestad J, Review and chemical thermodynamic representation of 〈U1−z Ce z O2±x 〉 and 〈U1−z Ln z O2±x 〉; Ln=Y, La, Nd, Gd[J]. J. Am. Ceram. Soc, 1986, 69: 867–876. Pankratz L B. Thermodynamic Properties of the Elements and Oxides [M]. U. S. Gov’t Printing office, Washington D C, 1982.