Thermodynamics of nonlinearly charged black holes in the Brans–Dicke modified gravity theory

Journal of Theoretical and Applied Physics - Tập 12 - Trang 147-157 - 2018
J. Pakravan1, M. V. Takook1
1Department of Physics, Razi University, Kermanshah, Iran

Tóm tắt

In this work, the charged black hole solution to the Brans–Dicke gravity theory in the presence of the nonlinear electrodynamics has been investigated. To simplify the field equations, a conformal transformation has been introduced which transforms the Brans–Dicke–Born–Infeld Lagrangian to that of Einstein-dilaton–Born–Infeld theory. A new class of $$(n+1)$$ -dimensional black hole solution has been constructed out as the exact solution to the Brans–Dicke theory in the presence of the Born–Infeld nonlinear electrodynamics. The physical properties of the solutions have been studied. The black hole charge and temperature have been calculated making use of the Gauss’s law and the concept of surface gravity, respectively. Also, the black hole mass and entropy have been obtained from geometrical methods. Trough a Smarr-type mass formula as a function of the black hole charge and entropy the black hole temperature and electric potential, as the intensive parameters conjugate to the black hole entropy and charge, have been calculated. The consistency of results of the geometrical and thermodynamical approaches confirms the validity of the first law of black hole thermodynamics for this new black hole solution. Finally, making use of the ensemble canonical method, the local stability or phase transition of the new $$(n+1)$$ -dimensional Brans–Dicke–Born–Infeld black hole solution has been analyzed.

Tài liệu tham khảo

Brans, C.H., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961) Herrera, R., Contreras, C., del Campo, S.: The Starobinsky inflationary model in a Jordan–Brans–Dicke-type theory. Class. Quantum. Grav. 12, 1937 (1995) Klebanov, I.R., Susskind, L., Banks, T.: Wormholes and the cosmological constant. Nucl. Phys. B 317, 665–692 (1989) Hrycyna, O., Szydlowski, M.: Brans–Dicke theory and the emergence of \(\Lambda\) CDM model. Phys. Rev. D 88, 064018 (2013) Brans, C.H.: Mach’s principle and a relativistic theory of gravitation II. Phys. Rev. 125, 2194 (1962) Fujii, Y., Maeda, K.I.: The Scalar–Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2003) Pakravan, J., Takook, M.V.: Thermodynamics of charged rotating solutions in Brans–Dicke gravity with Born–Infeld field. J. Theor. Appl. Phys. 11, 209–216 (2017) Born, M., Infeld, L.: Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425–451 (1934) Hendi, S.H., Panahiyan, S., Eslam Panah, B.: Geometrical method for thermal instability of nonlinearly charged BTZ Black Holes. Adv. High Energy Phys. 2015, 743086 (2015) Dehghani, M.: Thermodynamics of \(\left(2+1\right)\)-dimensional charged black holes with power-law Maxwell field. Phys. Rev. D 94, 104071 (2016) Dehghani, M., Hamidi, S.F.: Thermal stability analysis of nonlinearly charged asymptotic AdS black hole solutions. Phys. Rev. D 96, 044025 (2017) Dayyani, Z., Sheykhi, A., Dehghani, M.H.: Counterterm method in Einstein dilaton gravity and the critical behavior of dilaton black holes with a power-Maxwell field. Phys. Rev. D 95, 084004 (2017) Novello, M., Goulart, E., Salim, J.M., Perez Bergliaffa, S.E.: Cosmological effects of nonlinear electrodynamics. Class. Quant. Grav. 24, 3021 (2007) Novello, M., Perez Bergliaffa, S.E., Salim, J.: Nonlinear electrodynamics and the acceleration of the Universe. Phys. Rev. D 69, 127301 (2004) Camara, C.S., Carvalho, J.C., De Garcia Maia, M.R.: Nonlinearity of electrodynamics as a source of matter creation in a flat FRW cosmology. Int. J. Mod. Phys. D 16, 427 (2007) Dyadichev, V.V., Gal’tsov, D.V., Moniz, P.V.: Chaos-order transition in Bianchi type I non-Abelian Born–Infeld cosmology. Phys. Rev. D 72, 084021 (2005) Vollick, D.N.: Anisotropic Born–Infeld cosmologies. Gen. Rel. Grav. 35, 1511 (2003) Moniz, P.V.: Quintessence and Born–Infeld cosmology. Phys. Rev. D 66, 103501 (2002) Ayon-Beato, E., Garcia, A.: Four-parametric regular black hole solution. Gen. Rel. Grav. 37, 635 (2005) Breton, N.: Born–Infeld black hole in the isolated horizon framework. Phys. Rev. D 67, 124004 (2003) Yazadjiev, S.S.: Einstein–Born–Infeld-dilaton black holes in nonasymptotically flat spacetimes. Phys. Rev. D 72, 044006 (2005) Myung, Y.S., Kim, Y.W., Park, Y.J.: Thermodynamics of Einstein–Born–Infeld black holes in three dimensions. Phys. Rev. D 78, 044020 (2008) Myung, Y.S., Kim, Y.W., Park, Y.J.: Thermodynamics and phase transitions in the Born–Infeld-anti-de Sitter black holes. Phys. Rev. D 78, 084002 (2008) Khodam-Mohammadi, A.: Einstein–Born–Infeld on Taub-NUT spacetime in \(2k+2\) dimensions. Grav. Cosmol. 15, 154 (2009) Maeda, H., Hassaine, M., Martinez, C.: Lovelock black holes with a nonlinear Maxwell field. Phys. Rev. D 79, 044012 (2009) Hassaine, M., Martinez, C.: Higher-dimensional charged black hole solutions with a nonlinear electrodynamics source. Class. Quant. Grav. 25, 195023 (2008) Fernando, S.: Gravitational perturbation and quasi-normal modes of charged black holes in Einstein–Born–Infeld gravity. Gen. Relativ. Grav. 37, 585 (2005) Fernando, S., Holbrook, C.: Stability and quasi normal modes of charged Born–Infeld Black Holes. Int. J. Theor. Phys. 45, 1630 (2006) Fernando, S.: Decay of massless Dirac field around the Born–Infeld black hole. Int. J. Mod. Phys. A 25, 669 (2010) Dehghani, M.: Thermodynamics of \((2+1)\)-dimensional charged black holes with power-law Maxwell field. Phys. Rev. D 94, 104071 (2016) Dehghani, M.: Thermodynamics of \((2+1)\)-dimensional black holes in Einstein-Maxwell-dilaton gravity. Phys. Rev. D 96, 044014 (2017) Dehghani, M.H., Hendi, S.H., Sheykhi, A., Rastegar Sedehi, H.: Thermodynamics of rotating black branes in Einstein–Born–Infeld-dilaton gravity. J. Cosmol. Astropart. Phys. 0702, 020 (2007) Sheykhi, A., Riazi, N.: Thermodynamics of black holes in \((n+1)\)-dimensional Einstein–Born–Infeld-dilaton gravity. Phys. Rev. D 75, 024021 (2007) Chan, K.C.K., Horne, J.H., Mann, R.B.: Charged dilaton black holes with unusual asymptotics. Nucl. Phys. B 447, 441 (1995) Sheykhi, A.: Thermodynamics of charged topological dilaton black holes. Phys. Rev. D 76, 124025 (2007) Sheykhi, A.: Thermodynamical properties of topological Born–Infeld-dilaton black holes. Int. J. Mod. Phys. D 18, 25 (2009) Sheykhi, A., Alavirad, H.: Topological black holes in Brans–Dicke–Maxwell theory. Int. J. Mod. Phys. D 18, 11 (2009) Cai, R.G., Myung, Y.S.: Black holes in the Brans–Dicke–Maxwell theory. Phys. Rev D 56, 3466 (1997) Brown, J., York, J.: Quasilocal energy and conserved charges derived from the gravitational action. Phys. Rev. D 47, 1407 (1993) Brown, J.D., Creighton, J., Mann, R.B.: Temperature, energy, and heat capacity of asymptotically anti-de Sitter black holes. Phys. Rev. D 50, 6394 (1994) Dehghani, M.H., Bazrafshan, A.: Topological black holes of Einstein–Yang–Mills dilaton gravity. Int. J. Mod. Phys. D 19, 293 (2010) Kang, G.: Black hole area in Brans–Dicke theory. Phys. Rev. D 54, 7483 (1996) Cvetic, M., Gubser, S.S.: Phases of R-charged black holes, spinning branes and strongly coupled gauge theories. JHEP Phys. 04, 024 (1999) Caldarelli, M.M., Cognola, G., Klemm, D.: Thermodynamics of Kerr–Newman–AdS black holes and conformal field theories. Class. Quantum Grav. 17, 399 (2000) Dehghani, M.: Thermodynamics of novel charged dilatonic BTZ black holes. Phys. Lett. B 773, 105 (2017) Sheykhi, A., Hajkhalili, S.: Dilaton black holes coupled to nonlinear electrodynamic field. Phys. Rev. D 89, 104019 (2014) Sheykhi, A., Kazemi, A.: Higher dimensional dilaton black holes in the presence of exponential nonlinear electrodynamics. Phys. Rev. D 90, 044028 (2014)