Nhiệt động lực học và động lực học của sự hình thành vesicle lipid hình cầu

Journal of Biological Physics - Tập 35 - Trang 297-308 - 2009
Ernesto Hernández-Zapata1, Luciano Martínez-Balbuena2, Iván Santamaría-Holek3
1Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, H. Caborca, México
2Departamento de Investigación en Física, Universidad de Sonora, Hermosillo, México
3Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Autónoma de México, Querétaro, México

Tóm tắt

Chúng tôi đề xuất một phương trình năng lượng tự do xét đến việc hình thành các vesicle hình cầu từ màng lipid phẳng và suy diễn ra phương trình Fokker-Planck cho phân bố xác suất mô tả động lực học của sự hình thành vesicle. Chúng tôi nhận thấy rằng sự hình thành có thể xảy ra như một quá trình kích hoạt đối với các màng nhỏ và như một quá trình vận chuyển đối với các màng đủ lớn. Chúng tôi cung cấp các biểu thức rõ ràng cho tỷ lệ chuyển tiếp và thời gian đặc trưng của sự hình thành vesicle dưới hình thức các tham số vật lý liên quan.

Từ khóa

#động lực học vesicle #màng lipid #phương trình Fokker-Planck #quá trình hình thành vesicle

Tài liệu tham khảo

Lei, G., MacDonald, R.C.J.: Effects on interactions of oppositely charged phospholipid vesicles of covalent attachment of polyethylene glycol oligomers to their surfaces: Adhesion, Hemifusion, Full Fusion and “Endocytosis”. J. Membr. Biol. 221, 97–106 (2008) Cans, A.-S., Wittenberg, N., Karlsson, R., Sombers, L., Karlsson, M., Orwar, O., Ewing, A.: Artificial cells: unique insights into exocytosis using liposomes and lipid nanotubes. PNAS 100(2), 400–404 (2003) Pantazatos, D.P., MacDonald, R.C.: Directly observed membrane fusion between oppositely charged phospholipid bilayers. J. Membrane Biol. 170, 27–38 (1999) Lei, G., MacDonald, R.C.: Lipid bilayer vesicle fusion: intermediate captured by high-speed microfluorescence spectroscopy. J. Biophys. 85, 1585–1599 (2003) Lapinski, M.M., Castro-Forero, A., Greiner, A.J., Ofoli, R.Y., Blanchard, G.J.: Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23, 11677–11683 (2007) Svetina, S., Žekš, B.: Shape behavior of lipid vesicles as the basis of some cellular processes. Anat. Rec. 268, 215–225 (2002) Leonetti, J.P., Machy, P., Degols, G., Lebleu, B., Leserman, L.: Antibody-targeted liposomes containing oligodeoxyribonucleotides complementary to viral-RNA selectively inhibit viral replication. PNAS USA 87, 2448–2451 (1990) Renneisen, K., Leserman, L., Matthes, E., Schroder, H.C., Müller, W.E.G.: Inhibition of expression of human immunodeficiency virus-1 in vitro by antibody-targeted liposomes containing antisense RNA to the ENV region. J. Biol. Chem. 265(27), 16337–16342 (1990) Dominak, L.M., Keating, C.D.: Polymer encapsulation within giant lipid vesicles. Langmuir 23, 7148–7154 (2007) Evans, E., Needham, D.: Physical properties of surfactant bilayer membranes – thermal transitions, elasticity, rigidity, cohesion, and colloidal interactions. J. Phys. Chem. 91, 4219–4228 (1987) Henriksen, J.R., Ipsen, J.H.: Measurements of membrane elasticity by micro-pipette aspiration. Eur. Phys. J. E. 14, 149–167 (2004) Evans E., Rawicz W.: Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Let. 64(17), 2094–2097 (1990) Ly, H.V., Longo, M.L.: The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. Biophys. J. 87, 1013–1033 (2004) Karlsson, A., Scott, K., Markström, M., Davidson, M., Konkoli, Z., Orwar, O.: Controlled initiation of enzymatic reactions in micrometer-sized biomimetic compartments. J. Phys. Chem. B 109, 1609–1617 (2005) Bolinger, P.Y., Stamou, D., Vogel, H.: Integrated nanoreactor systems: triggering the release and mixing of compounds inside single vesicles. J. Am. Chem. Soc. 126, 8594–8595 (2004) Lasic, D.D.: The mechanism of vesicle formation. Biochem. J. 256(1), 1–11 (1988) López-Oyama, A., Paredes-Quijada, G., Acuna-Campa, H., Maldonado, A.: Effect of phospholipid composition and of different salts on the shape and size of giant SOPC: SOPS vesicles. Biophys. J. 88(1 Part 2 Suppl. S), 234A (2005) Paredes-Quijada, G., Aranda-Espinoza, H., Maldonado, A.: Shapes of mixed phospholipid vesicles. J. Biol. Phys. 32(2), 177–181 (2006) Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. 81, 303-311 (1986) Dimitrov, D.S., Angelova, M.I.: Lipid swelling and liposome formation mediated by electric fields. Bioelectrochemistry and Bioenergetics 19(2), 323–336 (1988) Krzywicki, T.G., Tardieu, A., Luzzati, V.: The smectic phase of lipid-water systems: properties related to the nature of the lipid and to the presence of net electrical charges. Mol. Cryst. Liq. Cryst. 8, 285–291 (1969) Srividya, N., Muralidharan, S.: Determination of the line tension of giant vesicles from pore-closing dynamics. J. Phys. Chem. B 112(24), 7147–7152 (2008) Gadomski, A., Rubí J.M.: On the two principal curvatures as potential barriers in a model of complex matter agglomeration. Chem. Phys. 293, 169–177 (2003) Gadomski, A.: Curvature effects in clusters grown in a 2D discrete space: an algebraic approach. Intern. J. Mod. Phys. C 13(9), 1285–1299 (2002) Helfrich, W.: Elastic properties of liquid bilayers: theory and possible experiments. Naturforsch Z. C 28, 693–703 (1973) Safran, S.A.: Statistical Thermodynamics of Surfaces, Interfaces, and Membranes. Addison-Wesley, New York (1994) Boal, D.: Mechanics of the Cell. Cambridge University Press, Cambridge (2002) Antonietti, M., Forster, S.: Vesicles and liposomes: a self-assembly principle beyond lipids. Adv. Mater. 15, 1323–1333 (2003) Le, T.D., Olsson, U., Mortensen, K.: Topological transformation of a surfactant bilayer. Physica B 276–278, 379–380 (2000) Siegel, D.P., Kozlov, M.M.: The Gaussian curvature elastic modulus of N-monomethylated dioleoyilphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J. 87, 366–374 (2004) de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984) Reguera, D., Vilar, J.M.G., Rubi, J.M.: The mesoscopic dynamics of thermodynamic systems. J. Phys. Chem. B 109, 21502–21515 (2005) Gadomski, A., Kruszewska, N., Santamaría-Holek, I., Uher, J.J., Pawlak, Z., Oloyede, A., Pechkova, E., Nicolini, C.: Can modern statistical mechanics unravel some practical problems encountered in model biomatter aggregations emerging in internal—& external—friction conditions? In: Kim, B.-S. (ed.) Statistical Mechanics Research, pp. 44–91. Nova, New York (2008) Landau, L., Lifshitz, E.M.: Course of Theoretical Physics, Statistical Physics Part 1. Pergamon, New York (1980) Miao, L., Lomholt, N.A., Kleis, J.: Dynamics of shape fluctuations of quasi-spherical vesicles revisited. Eur. Phys. J. E. 9, 143–160 (2002) Risken, H.: The Fokker–Planck Equation. Springer, Berlin (1989) Pérez-Madrid, A.: A model for nonexponential relaxation and aging in dissipative systems. J. Chem. Phys. 122, 214914-1–214914-6 (2005) Pérez-Madrid, A., Santamaría-Holek, I.: Fluctuation theorems for systems under Fokker-Planck dynamics. Phys. Rev. E 79, 011101-1–011101-5 (2009) Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, New York (2001)