Thermodynamics and Preferred Frame

Jakub Rembieliński1, Kordian Andrzej Smoliński1, Grzegorz Duniec1
1Department of Theoretical Physics, University of Lodz, Łódź, Poland

Tóm tắt

The Lorentz covariant statistical physics and thermodynamics is formulated within the preferred frame approach. The transformation laws for geometrical and mechanical quantities such as volume and pressure as well as the Lorentz-invariant measure on the phase space are found using Lorentz transformations in absolute synchronization. Next, the probability density and partition function are investigated using the preferred frame approach, and the transformation laws for internal energy, entropy, temperature and other thermodynamical potentials are established. The Lorentz covariance of basic thermodynamical relations, including Clapeyron's equation and Maxwell's relations is shown. Finally, the relation of presented approach to the previous approaches to relativistic thermodynamics is briefly discussed.

Từ khóa


Tài liệu tham khảo

R. Anderson, I. Vetharaniam, and G. E. Stedman, “Conventionality of synchronization, gauge dependence and test theories of relativity,” Phys. Rep. 295, 93–180 (1998).

H. Arzeliès, “Transformation relativiste de la température et de quelques autres grandeurs thermodynamiques,” Nuovo Cimento XXXV, 792–804 (1965).

J. S. Bell, “Quantum mechanics for cosmologists,” in C. Isham, R. Penrose, and D. Sciama, eds., Quantum Gravity 2, 611–637 (Oxford University Press, New York, 1981).

P. Caban and J. Rembieliński, “Localization problem in quantum mechanics and preferred frame,” in J. Rembieliński, ed., Particles, Fields, and Gravitation (AIP, Woodbury, 1998), pp. 199–208.

P. Caban and J. Rembieliński, “Lorentz-covariant quantum mechanics and preferred frame,” Phys. Rev. A 59, 4187–4196 (1999).

J. R. Croca and F. Selleri, “Is the one-way velocity of light measurable?,” Nuovo Cimento B 114, 447–452 (1999).

A. Einstein, “Uber das Relativitätsprinzip und die aus demselben gezogenen Folderungen,” Jahrbuch der Radioktivität und Elektronik 4, 411–462 (1907).

A. Einstein, Sidelights on Relativity (Dutton, New York, 1922).

D. ter Haar and H. Wergeland, “Thermodynamics and statistical mechanics in the special theory of relativity,” Phys. Rep. 1, 31–54 (1971).

L. Hardy, “Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories,” Phys. Rev. Lett. 68, 2981–2984 (1992).

M. Jammer, “Some fundamental problems in the special theory of relativity,” in G. Toraldo di Francia, ed., Problems in the Foundations of Physics (North-Holland, Amsterdam, 1979), pp. 206–236.

P. T. Landsberg, “Does a moving body appear cold?,” Nature 212, 571–572 (1966).

P. T. Landsberg and K. A. Johns, “The problem of moving thermometers,” Proc. R. Soc. London, Ser. A 306, 477–486 (1968).

M. von Laue, Die Relativitätstheorie (Vieweg, Braunschweig, 1961).

R. Mansouri and R. U. Sexl, “A test theory of special relativity. I. Simultaneity and clock synchronization,” Gen. Relativ. Gravit. 8, 497–513 (1977).

H. Ott, “Lorentz-Transformation der Wärme und der Temperatur,” Z. Phys. 175, 70–104 (1963).

I. C. Percival, “Quantum transfer function, weak nonlocality and relativity,” Phys. Lett. A 244, 495–501 (1998).

I. C. Percival, “Cosmic quantum measurement,” Proc. R. Soc. London A 456, 25–37 (2000).

H. Reichenbach, Axiomatization of the Theory of Relativity (University of California Press, Berkeley, 1969).

J. Rembieliński, “The relativistic ether hypothesis,” Phys. Lett. A 78, 33–36 (1980).

J. Rembieliński, “Tachyons and preferred frames,” Int. J. Mod. Phys. A 12, 1677–1709 (1997).

C. M. Will, “Clock synchronization and isotropy of the one-way speed of light,” Phys. Rev. D 45, 403–411 (1992).

C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, 1993).