Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wright, 2001, Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants, J. Am. Chem. Soc., 123, 1173, 10.1021/ja002455u
Musialik, 2005, Scavenging of dpph radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer, Org. Lett., 7, 4951, 10.1021/ol051962j
Shen, 2005, Successful application of TD-DFT in transient absorption spectra assignment, Phys. Org. Chem., 7, 243
Kozlowski, 2007, Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones, J. Phys. Chem. A, 111, 1138, 10.1021/jp066496+
Estevez, 2010, A computational study on the acidity dependence of radical-scavenging mechanisms of anthocyanidins, J. Phys. Chem. B, 114, 9706, 10.1021/jp1041266
Klein, 2007, DFT/B3LYP study of tocopherols and chromans antioxidant action energetics, Chem. Phys., 336, 51, 10.1016/j.chemphys.2007.05.007
Rimarčik, 2010, Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, J. Mol. Struct. THEOCHEM, 952, 25, 10.1016/j.theochem.2010.04.002
Nenadis, 2012, Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids, Food Res. Int., 48, 538, 10.1016/j.foodres.2012.05.014
Leopoldini, 2011, The molecular basis of working mechanism of natural polyphenolic antioxidants, Food Chem., 125, 288, 10.1016/j.foodchem.2010.08.012
Marković, 2011, Mechanistic study of the structure–activity relationship for the free radical scavenging activity of baicalein, J. Mol. Model., 17, 2575, 10.1007/s00894-010-0942-y
Marković, 2012, PM6 and DFT study of free radical scavenging activity of morin, Food Chem., 134, 1754, 10.1016/j.foodchem.2012.03.124
Marković, 2013, A DFT and PM6 study of free radical scavenging activity of ellagic acid, Monatsh. Chem., 144, 803, 10.1007/s00706-013-0949-z
W. Turner, Process for reducing anthraquinone requirement in pulping of lignocellulosic material, United States Patent. Patent Number: 5,871,641.
Cai, 2004, Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer, Life Sci., 74, 2157, 10.1016/j.lfs.2003.09.047
Nejad, 2013, Rubia tinctorum L. (Rubiaceae) or Madder as one of the living color to dyeing wool, Int. J. Adv. Biol. Biomed. Res., 1, 1315
Nusko, 2000, Anthranoid laxative use is not a risk factor for colorectal neoplasia: results of a prospective case control study, Gut, 46, 651, 10.1136/gut.46.5.651
Fotia, 2012, The natural compound alizarin as an osteotropic drug for the treatment of bone tumors, J. Orth. Res., 30, 1486, 10.1002/jor.22101
Pickhardt, 2005, Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells, J. Biol. Chem., 280, 3628, 10.1074/jbc.M410984200
Burnett, 1968, Naturally occurring quinones. Part XV. Biogenesis of the anthraquinones in Rubia tinctorum L. (Madder), J. Chem. Soc. C, 2438
Puchtler, 1969, On the history and mechanism of alizarin and alizarin red S stains for calcium, J. Histochem. Cytochem., 17, 110, 10.1177/17.2.110
Fishbein, 2008, Atherosclerotic oxalosis in coronary arteries, Cardiovasc. Pathol., 17, 117, 10.1016/j.carpath.2007.07.002
Zhong, 2004, Determination of proteins with alizarin and alizarin red S by Rayleigh light scattering technique, Talanta, 62, 37, 10.1016/S0039-9140(03)00406-5
Cai, 2006, Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants, Life Sci., 78, 2872, 10.1016/j.lfs.2005.11.004
Yu, 2005, Reduction of oxidative stress and apoptosis in hyperlipidemic rabbits by ellagic acid, J. Nutr. Biochem., 16, 675, 10.1016/j.jnutbio.2005.03.013
Marković, 2010, Analytical characterization of lichexanthone in lichen: HPLC, UV spectroscopic, and DFT analysis of lichexanthone extracted from Laurera benguelensis (Mull. Arg.) Zahlbr, Monatsh. Chem., 141, 945, 10.1007/s00706-010-0349-6
Inoue, 2009, Induction of kidney and liver cancers by the natural food additive madder color in a two-year rat carcinogenicity study, Food Chem. Toxicol., 47, 184, 10.1016/j.fct.2008.10.031
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.J. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, MC. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, A.D. Malick, K.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 09, Revision B.01, Gaussian Inc, Wallingford CT, 2009.
Marenich, 2009, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113, 6378, 10.1021/jp810292n
Namazian, 2010, Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions, J. Chem. Theor. Comp., 6, 2721, 10.1021/ct1003252
Carpenter, 1988, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure, J. Mol. Struct. THEOCHEM, 169, 41, 10.1016/0166-1280(88)80248-3
Reed, 1988, Intermolecular interactions from a natural bond orbitals, donor–acceptor viewpoint, Chem. Rev., 88, 899, 10.1021/cr00088a005
Glendening, 2009
Weinhold, 2005
Bartmess, 1994, Thermodynamics of the electron and the proton, J. Phys. Chem., 98, 6420, 10.1021/j100076a029
Marković, 2013, Solvation enthalpies of the proton and electron in polar and no-polar solvents, J. Serb. Soc. Comp. Mech., 7, 1
Leopoldini, 2004, Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism, J. Phys. Chem. A, 108, 4916, 10.1021/jp037247d
Trouillas, 2006, A DFT study of the reactivity of OH groups in quercetin and taxifolin antioxidants: the specificity of the 3-OH site, Food Chem., 97, 679, 10.1016/j.foodchem.2005.05.042
Jeremić, 2012, Antioxidant and free radical scavenging activity of purpurin, Monatsh. Chem., 143, 427, 10.1007/s00706-011-0695-z
Hou, 2014, Theoretical study of antioxidative ability and antioxidative mechanism of norathyriol in solution, Comp. Theor. Chem., 1028, 87, 10.1016/j.comptc.2013.11.023