Thermodynamic reassessment of the Ag–Cu phase diagram at nano-scale

M.Z. Chu1, Y.Z. Qin1, T. Xiao1, W. Shen1, T. Su1, C.H. Hu1, Chengying Tang1
1School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, PR China

Tài liệu tham khảo

Kwon, 2015, Understanding the unique electronic properties of nano structures using photoemission theory, Sci. Rep., 5, 17834, 10.1038/srep17834 Di Paola, 2016, Geometrical effects on the magnetic properties of nanoparticles, Nano Lett., 16, 2885, 10.1021/acs.nanolett.6b00916 Yang, 2015, Understanding nano effects in catalysis, Natl. Sci. Rev., 2, 183, 10.1093/nsr/nwv024 Zhang, 2000, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D Appl. Phys., 33, 2653, 10.1088/0022-3727/33/20/318 Nanda, 2009, Size-dependent melting of nanoparticles: hundred years of thermodynamic model, Pramana, 72, 617, 10.1007/s12043-009-0055-2 Calvo, 2015, Thermodynamics of nanoalloys, Phys. Chem. Chem. Phys., 17, 27922, 10.1039/C5CP00274E Brandner, 2015, Thermodynamics of micro- and nano-systems driven by periodic temperature variations, Phys. Rev. X., 5 Lee, 2005, Phase diagrams of nanometer-sized particles in binary systems, JOM (J. Occup. Med.), 57, 56 Sutter, 2008, Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires, Nano Lett., 8, 411, 10.1021/nl0719630 Xiong, 2012, Size-temperature phase diagram of titanium nanosolids, J. Phys. Chem. C, 116, 237, 10.1021/jp208149d Zhang, 2001, Melting temperatures of semiconductor nanocrystals in the mesoscopic size range, Semicond. Sci. Technol., 16, L33, 10.1088/0268-1242/16/6/101 Sun, 2002, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom, J. Phys. Chem. B, 106, 10701, 10.1021/jp025868l Zhang, 2000, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D Appl. Phys., 33, 2653, 10.1088/0022-3727/33/20/318 Safaei, 2007, Modelling the size effect on the melting temperature of nanoparticles, nanowires and nanofilms, J. Phys. Condens. Matter, 19, 216216, 10.1088/0953-8984/19/21/216216 Guisbiers, 2019, Advances in thermodynamic modelling of nanoparticles, Adv. Phys. X, 4, 1 Xiao, 2005, Melting behaviors of nanocrystalline Ag, J. Phys. Chem. B, 109, 20339, 10.1021/jp054551t Ao, 2007, Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles, Nanotechnology, 18, 255706, 10.1088/0957-4484/18/25/255706 Li, 2010, Modeling the thermodynamic properties of bimetallic nanosolids, J. Phys. Chem. Solid., 71, 810, 10.1016/j.jpcs.2010.02.003 Namazi, 2017, Analysis of the influence of element's entropy on the bulk metallic glass (BMG) entropy, complexity, and strength, Metall. Mater. Trans., 48, 780, 10.1007/s11661-016-3870-3 Pawlow, 1909, The dependence of the melting point on the surface energy of a solid body, Z. Phys. Chem., 65, 545, 10.1515/zpch-1909-6532 Takagi, 1954, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Jpn., 9, 359, 10.1143/JPSJ.9.359 Buffat, 1976, Size effect on the melting temperature of gold particles, Phys. Rev., 13, 2287, 10.1103/PhysRevA.13.2287 Sopoušek, 2017, Au-Ni nanoparticles: phase diagram prediction, synthesis, characterization, and thermal stability, Calphad, 58, 25, 10.1016/j.calphad.2017.05.002 Zhang, 2000, Size-dependent melting point depression of nanostructures: nanocalorimetric measurements, Phys. Rev. B: Solid State, 62, 10548, 10.1103/PhysRevB.62.10548 Lee, 2014, General equations of calphad-type thermodynamic description for metallic nanoparticle systems, Calphad, 44, 129, 10.1016/j.calphad.2013.07.008 Kaptay, 2012, Nano-Calphad: extension of the calphad method to systems with nano-phases and complexions, J. Mater. Sci., 8320, 10.1007/s10853-012-6772-9 Eichhammer, 2008, Calculation of the Au-Ge phase diagram for nanoparticles, Arch. Metall. Mater., 53, 1133 Park, 2008, Phase diagram reassessment of Ag-Au system including size effect, Calphad, 32, 135, 10.1016/j.calphad.2007.07.004 Chowdhury, 2009, Effect of Ag-Cu alloy nanoparticle composition on luminescence enhancement/quenching, J. Phys. Chem. C, 113, 13016, 10.1021/jp900294z Reddy, 2019, Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles, J. Hazard Mater., 367, 694, 10.1016/j.jhazmat.2019.01.004 Chang, 2019, Synthesis and characterization of Ag-Cu alloy nanoparticles for antimicrobial applications: a polydopamine chemistry application, Mater. Sci. Eng. C, 98, 675, 10.1016/j.msec.2018.12.092 Kim, 2010, Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles, Appl. Phys. Lett., 96, 144101, 10.1063/1.3364132 Kammer, 2015, Optimization of Cu-Ag core-shell solderless interconnect paste technology, IEEE Trans. Compon. Packag. Manuf. Technol., 5, 910, 10.1109/TCPMT.2015.2438816 Hajra, 2004, Thermodynamics and phase equilibria involving nano phases in the Cu-Ag system, J. Nanosci. Nanotechnol., 4, 899, 10.1166/jnn.2004.088 Tang, 2012, Nonlinear size-dependent melting of the silica-encapsulated silver nanoparticles, Appl. Phys. Lett., 100, 201903, 10.1063/1.4712599 Horváth, 1987, Diffusion in nanocrystalline material, Solid State Commun., 62, 319, 10.1016/0038-1098(87)90989-6 Su, 2018, Nonlinear size-dependent melting of silica-encapsulated Ag-Cu alloy nanoparticles, J. Phys. Chem. C, 122, 27761, 10.1021/acs.jpcc.8b09156 Huang, 2009, Synthesis of nanosize-controllable copper and its alloys in carbon shells, Chem. Commun., 2 Lee, 2007, Effect of substrates on the melting temperature of gold nanoparticles, Calphad, 31, 105, 10.1016/j.calphad.2006.10.001 Garzel, 2012, Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect, Calphad, 36, 52, 10.1016/j.calphad.2011.11.005 Sopoušek, 2014, Ag-Cu colloid synthesis: bimetallic nanoparticle characterisation and thermal treatment, J. Nanomater., 2014, 13, 10.1155/2014/638964 Delsante, 2015, Synthesis and thermodynamics of Ag-Cu nanoparticles, Phys. Chem. Chem. Phys., 17, 28387, 10.1039/C5CP02058A Jabbareh, 2018, Thermodynamic modeling of Ag - Cu nanoalloy phase diagram, Calphad, 60, 208, 10.1016/j.calphad.2018.01.004 Atanasov, 2014, Structure and solid solution properties of Cu–Ag nanoalloys, J. Phys. Condens. Matter, 26, 275301, 10.1088/0953-8984/26/27/275301 Redlich, 1948, Algebraic Representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 40, 345, 10.1021/ie50458a036 Butler, 1932, The thermodynamics of the surfaces of solutions, Proc. R. Soc. London, Ser. A., 135, 348, 10.1098/rspa.1932.0040 Yeum, 1989, Estimation of the surface tensions of binary liquid alloys, Metall. Trans. B., 20, 693, 10.1007/BF02655927 Tanaka, 2000, Calculation of surface tension of liquid Bi-Sn alloy using thermochemical application library ChemApp, Calphad, 24, 465, 10.1016/S0364-5916(00)85001-4 Tanaka, 1996, Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures, Int. J. Mater. Res., 87, 380, 10.1515/ijmr-1996-870509 Nanda, 2012, Liquid-drop model for the surface energy of nanoparticles, Phys. Lett., 376, 1647, 10.1016/j.physleta.2012.03.055 Hayes, 1986, Thermodynamic optimization of the Cu-Ag-Pb system, Met.kd., 77, 749 Luo, 2011, Gibbs free energy approach to calculate the thermodynamic properties of copper nanocrystals, Phys. B Condens. Matter, 406, 859, 10.1016/j.physb.2010.12.014 Lee, 2005, Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate, J. Mater. Sci., 40, 2167, 10.1007/s10853-005-1927-6 Lee, 2004, Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys, Mater. Trans., 45, 2864, 10.2320/matertrans.45.2864 Nakamoto, 2008, Measurement of surface tension of solid Cu by improved multiphase equilibrium, Metall. Mater. Trans. B, 39, 570, 10.1007/s11663-008-9168-0 Novakovic, 2005, Surface and transport properties of Ag-Cu liquid alloys, Surf. Sci., 576, 175, 10.1016/j.susc.2004.12.009 Sebo, 1977, C.H.P. The surface tension of liquid silver-copper alloys, Lupis, Metall. Trans., 8B, 691, 10.1007/BF02669352 Krause, 1929, Die Oberflächenspannung geschmolzener Metalle und Legierungen Die Oberflächenspannung von Gold, Zink, Gold‐Kupfer‐, Silber‐Kupfer‐ und Eisenlegierungen, Z. Anorg. Allg. Chem., 181, 353, 10.1002/zaac.19291810133 Lu, 2014, Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments, Apl. Mater., 2, 10.1063/1.4866052 Dinsdale, 1991, SGTE data for pure elements, Calphad, 15, 317, 10.1016/0364-5916(91)90030-N Wagner, 1971, Thermodynamic excess quantities of liquid binary silver-copper by mass spectrometry, High Temp. Sci., 3, 481