Thermodynamic reassessment of the Ag–Cu phase diagram at nano-scale
Tài liệu tham khảo
Kwon, 2015, Understanding the unique electronic properties of nano structures using photoemission theory, Sci. Rep., 5, 17834, 10.1038/srep17834
Di Paola, 2016, Geometrical effects on the magnetic properties of nanoparticles, Nano Lett., 16, 2885, 10.1021/acs.nanolett.6b00916
Yang, 2015, Understanding nano effects in catalysis, Natl. Sci. Rev., 2, 183, 10.1093/nsr/nwv024
Zhang, 2000, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D Appl. Phys., 33, 2653, 10.1088/0022-3727/33/20/318
Nanda, 2009, Size-dependent melting of nanoparticles: hundred years of thermodynamic model, Pramana, 72, 617, 10.1007/s12043-009-0055-2
Calvo, 2015, Thermodynamics of nanoalloys, Phys. Chem. Chem. Phys., 17, 27922, 10.1039/C5CP00274E
Brandner, 2015, Thermodynamics of micro- and nano-systems driven by periodic temperature variations, Phys. Rev. X., 5
Lee, 2005, Phase diagrams of nanometer-sized particles in binary systems, JOM (J. Occup. Med.), 57, 56
Sutter, 2008, Phase diagram of nanoscale alloy particles used for vapor-liquid-solid growth of semiconductor nanowires, Nano Lett., 8, 411, 10.1021/nl0719630
Xiong, 2012, Size-temperature phase diagram of titanium nanosolids, J. Phys. Chem. C, 116, 237, 10.1021/jp208149d
Zhang, 2001, Melting temperatures of semiconductor nanocrystals in the mesoscopic size range, Semicond. Sci. Technol., 16, L33, 10.1088/0268-1242/16/6/101
Sun, 2002, Correlation between the melting point of a nanosolid and the cohesive energy of a surface atom, J. Phys. Chem. B, 106, 10701, 10.1021/jp025868l
Zhang, 2000, Modelling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D Appl. Phys., 33, 2653, 10.1088/0022-3727/33/20/318
Safaei, 2007, Modelling the size effect on the melting temperature of nanoparticles, nanowires and nanofilms, J. Phys. Condens. Matter, 19, 216216, 10.1088/0953-8984/19/21/216216
Guisbiers, 2019, Advances in thermodynamic modelling of nanoparticles, Adv. Phys. X, 4, 1
Xiao, 2005, Melting behaviors of nanocrystalline Ag, J. Phys. Chem. B, 109, 20339, 10.1021/jp054551t
Ao, 2007, Size effects on the Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles, Nanotechnology, 18, 255706, 10.1088/0957-4484/18/25/255706
Li, 2010, Modeling the thermodynamic properties of bimetallic nanosolids, J. Phys. Chem. Solid., 71, 810, 10.1016/j.jpcs.2010.02.003
Namazi, 2017, Analysis of the influence of element's entropy on the bulk metallic glass (BMG) entropy, complexity, and strength, Metall. Mater. Trans., 48, 780, 10.1007/s11661-016-3870-3
Pawlow, 1909, The dependence of the melting point on the surface energy of a solid body, Z. Phys. Chem., 65, 545, 10.1515/zpch-1909-6532
Takagi, 1954, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Jpn., 9, 359, 10.1143/JPSJ.9.359
Buffat, 1976, Size effect on the melting temperature of gold particles, Phys. Rev., 13, 2287, 10.1103/PhysRevA.13.2287
Sopoušek, 2017, Au-Ni nanoparticles: phase diagram prediction, synthesis, characterization, and thermal stability, Calphad, 58, 25, 10.1016/j.calphad.2017.05.002
Zhang, 2000, Size-dependent melting point depression of nanostructures: nanocalorimetric measurements, Phys. Rev. B: Solid State, 62, 10548, 10.1103/PhysRevB.62.10548
Lee, 2014, General equations of calphad-type thermodynamic description for metallic nanoparticle systems, Calphad, 44, 129, 10.1016/j.calphad.2013.07.008
Kaptay, 2012, Nano-Calphad: extension of the calphad method to systems with nano-phases and complexions, J. Mater. Sci., 8320, 10.1007/s10853-012-6772-9
Eichhammer, 2008, Calculation of the Au-Ge phase diagram for nanoparticles, Arch. Metall. Mater., 53, 1133
Park, 2008, Phase diagram reassessment of Ag-Au system including size effect, Calphad, 32, 135, 10.1016/j.calphad.2007.07.004
Chowdhury, 2009, Effect of Ag-Cu alloy nanoparticle composition on luminescence enhancement/quenching, J. Phys. Chem. C, 113, 13016, 10.1021/jp900294z
Reddy, 2019, Wide spectrum photocatalytic activity in lanthanide-doped upconversion nanophosphors coated with porous TiO2 and Ag-Cu bimetallic nanoparticles, J. Hazard Mater., 367, 694, 10.1016/j.jhazmat.2019.01.004
Chang, 2019, Synthesis and characterization of Ag-Cu alloy nanoparticles for antimicrobial applications: a polydopamine chemistry application, Mater. Sci. Eng. C, 98, 675, 10.1016/j.msec.2018.12.092
Kim, 2010, Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles, Appl. Phys. Lett., 96, 144101, 10.1063/1.3364132
Kammer, 2015, Optimization of Cu-Ag core-shell solderless interconnect paste technology, IEEE Trans. Compon. Packag. Manuf. Technol., 5, 910, 10.1109/TCPMT.2015.2438816
Hajra, 2004, Thermodynamics and phase equilibria involving nano phases in the Cu-Ag system, J. Nanosci. Nanotechnol., 4, 899, 10.1166/jnn.2004.088
Tang, 2012, Nonlinear size-dependent melting of the silica-encapsulated silver nanoparticles, Appl. Phys. Lett., 100, 201903, 10.1063/1.4712599
Horváth, 1987, Diffusion in nanocrystalline material, Solid State Commun., 62, 319, 10.1016/0038-1098(87)90989-6
Su, 2018, Nonlinear size-dependent melting of silica-encapsulated Ag-Cu alloy nanoparticles, J. Phys. Chem. C, 122, 27761, 10.1021/acs.jpcc.8b09156
Huang, 2009, Synthesis of nanosize-controllable copper and its alloys in carbon shells, Chem. Commun., 2
Lee, 2007, Effect of substrates on the melting temperature of gold nanoparticles, Calphad, 31, 105, 10.1016/j.calphad.2006.10.001
Garzel, 2012, Reassessment of the Ag-Cu phase diagram for nanosystems including particle size and shape effect, Calphad, 36, 52, 10.1016/j.calphad.2011.11.005
Sopoušek, 2014, Ag-Cu colloid synthesis: bimetallic nanoparticle characterisation and thermal treatment, J. Nanomater., 2014, 13, 10.1155/2014/638964
Delsante, 2015, Synthesis and thermodynamics of Ag-Cu nanoparticles, Phys. Chem. Chem. Phys., 17, 28387, 10.1039/C5CP02058A
Jabbareh, 2018, Thermodynamic modeling of Ag - Cu nanoalloy phase diagram, Calphad, 60, 208, 10.1016/j.calphad.2018.01.004
Atanasov, 2014, Structure and solid solution properties of Cu–Ag nanoalloys, J. Phys. Condens. Matter, 26, 275301, 10.1088/0953-8984/26/27/275301
Redlich, 1948, Algebraic Representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 40, 345, 10.1021/ie50458a036
Butler, 1932, The thermodynamics of the surfaces of solutions, Proc. R. Soc. London, Ser. A., 135, 348, 10.1098/rspa.1932.0040
Yeum, 1989, Estimation of the surface tensions of binary liquid alloys, Metall. Trans. B., 20, 693, 10.1007/BF02655927
Tanaka, 2000, Calculation of surface tension of liquid Bi-Sn alloy using thermochemical application library ChemApp, Calphad, 24, 465, 10.1016/S0364-5916(00)85001-4
Tanaka, 1996, Application of thermodynamic databases to the evaluation of surface tensions of molten alloys, salt mixtures and oxide mixtures, Int. J. Mater. Res., 87, 380, 10.1515/ijmr-1996-870509
Nanda, 2012, Liquid-drop model for the surface energy of nanoparticles, Phys. Lett., 376, 1647, 10.1016/j.physleta.2012.03.055
Hayes, 1986, Thermodynamic optimization of the Cu-Ag-Pb system, Met.kd., 77, 749
Luo, 2011, Gibbs free energy approach to calculate the thermodynamic properties of copper nanocrystals, Phys. B Condens. Matter, 406, 859, 10.1016/j.physb.2010.12.014
Lee, 2005, Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate, J. Mater. Sci., 40, 2167, 10.1007/s10853-005-1927-6
Lee, 2004, Surface tension and its temperature coefficient of liquid Sn-X (X=Ag, Cu) alloys, Mater. Trans., 45, 2864, 10.2320/matertrans.45.2864
Nakamoto, 2008, Measurement of surface tension of solid Cu by improved multiphase equilibrium, Metall. Mater. Trans. B, 39, 570, 10.1007/s11663-008-9168-0
Novakovic, 2005, Surface and transport properties of Ag-Cu liquid alloys, Surf. Sci., 576, 175, 10.1016/j.susc.2004.12.009
Sebo, 1977, C.H.P. The surface tension of liquid silver-copper alloys, Lupis, Metall. Trans., 8B, 691, 10.1007/BF02669352
Krause, 1929, Die Oberflächenspannung geschmolzener Metalle und Legierungen Die Oberflächenspannung von Gold, Zink, Gold‐Kupfer‐, Silber‐Kupfer‐ und Eisenlegierungen, Z. Anorg. Allg. Chem., 181, 353, 10.1002/zaac.19291810133
Lu, 2014, Equilibrium Cu-Ag nanoalloy structure formation revealed by in situ scanning transmission electron microscopy heating experiments, Apl. Mater., 2, 10.1063/1.4866052
Dinsdale, 1991, SGTE data for pure elements, Calphad, 15, 317, 10.1016/0364-5916(91)90030-N
Wagner, 1971, Thermodynamic excess quantities of liquid binary silver-copper by mass spectrometry, High Temp. Sci., 3, 481