Thermodynamic properties of geikielite (MgTiO3) and ilmenite (FeTiO3) derived from vibrational methods combined with Raman and infrared spectroscopic data
Tóm tắt
We present a model for the lattice vibrational density of states of MgTiO3 (geikielite) and FeTiO3 (ilmenite) that predicts thermodynamic properties, in agreement with observational data. The model is based on Kieffer’s method combined with spectroscopic data. For both substances experimental data sets are influenced by non-stoichiometry. For geikielite that affects the volume, whereas for ilmenite volume and bulk modulus are affected. We show that Kieffer’s method enables predicting bulk moduli in pressure–temperature space. We demonstrate that intrinsic anharmonicity or electronic effects significantly affect the heat capacity of ilmenite, whereas that is not the case for geikielite. We use Kieffer’s method to derive multiple-Einstein models, from which we demonstrate that thermodynamic properties are insignificantly influenced by dispersion in Grüneisen, mode-q and anharmonicity parameters for both substances. We show that our results enable predicting thermodynamic properties and shear modulus of the solid solution formed from geikielite and ilmenite. Geikielite and ilmenite are added to our thermodynamic database for the system MgO–SiO2–FeO, to enable modeling phase stability and physical properties of titanium-rich reservoirs in the Earth’s Moon.
Tài liệu tham khảo
Akaogi M, Abe K, Yusa H, Ishii T, Tajima T, Kojitani H, Mori D, Inaguma Y (2017) High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C. Phys Chem Miner 44:63–74
Akaogi M, Tajima T, Okano M, Kojitani H (2019) High-pressure and high-temperature phase relations in Fe2TiO4 and Mg2TiO4 with implications for titanomagnetite inclusions in superdeep diamonds. Minerals 9(614):2–12
Andersen DJ, Bishop FC, Lindsley DH (1991) Internally consistent solution models for Fe-Mg-Mn-Ti oxides: Fe-Mg-Ti oxides and olivine. Am Miner 76:427–444
Anovitz LM, Treiman AH, Essene EJ, Hemingway BS, Westrum EF Jr, Wall VJ, Burriel R, Bohlen SR (1985) The heat-capacity of ilmenite and phase equilibria in the system Fe-Ti-O. Geochim Cosmochim Acta 49:2037–2040
Baran EJ, Botto IL (1978) Die IR-spektren einiger doppeloxiden mit ilmenit-struktur. Z Anorg Allg Chem 444:282–245
Bayer G, Felsche J, Schulz RP (1972) X-ray study and mössbauer spectroscopy on lunar ilmenites (Apollo 11). Earth Planet Sci Lett 16:273–274
Birch F (1952) Elasticity and constitution of the earth’s interior. J Geophys Res 57:227–286
Charlier B, Grove TL, Namur O, Holz F (2018) Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the moon. Geochim Cosmochim Acta 234:50–69
de Jong M, Chen W, Angsten T, Jain A, Notestine R, Gamst A, Sluiter M, Ande CK, van der Zwaag S, Plate JJ, Toher C, Curtarolo S, Ceder G, Persson KA, Asta M (2015) Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data 2:150009
de Vries J, van den Berg AP, van Westrenen W (2010) Formation and evolution of a lunar core from ilmenite-rich magma ocean cumulates. Earth Planet Sci Lett 292(1–2):139–147
Dygert N, Liang Y, Hess P (2013) The importance of melt TiO2 in affecting major and trace element partitioning between Fe-Ti oxides and lunar picritic glass melts. Geochim Cosmochim Acta 106:134–151
Dygert N, Hirth G, Liang Y (2016) A flow law for ilmenite in dislocation creep: implications for lunar cumulate mantle overturn. Geophys Res Lett 43:532–540
Dygert N, Lin J-F, Marshall EW, Kono Y, Gardner JE (2017) A low viscosity lunar magma ocean forms a stratified anorthitic flotation crust with mafic poor and rich units. Geophys Res Lett 44:11282–11291
Evans AJ, Tikoo SM (2022) An episodic high-intensity lunar core dynamo. Nat Astron. https://doi.org/10.1038/s41550-021-01574-y
Fateley WG, McDevitt NT, Bently FF (1971) Infrared and Raman selection rules for lattice vibrations: the correlation method. Appl Spectrosc 25:155–174
Haggerty SE, Boyd FR, Bell PM, Finger LW, Bryan WB (1970) Iron titanium oxides and olivine from 10020 and 10071. Science 167:613–615
Henderson CMB, Knight KS, Lennie AR (2009) Temperature dependence of rutile (TiO2) and geikielite (MgTiO3) structures determined using neutron powder diffraction. Open Mineral J 3:1–11
Hess PC, Parmentier EM (1995) A model for the thermal and chemical evolution of the moon’s interior: implication for the onset of mare volcanism. Earth Planet Sci Lett 134:501–514
Hofmeister AM (1993) IR reflectance spectra of natural ilmenite: comparison with isostructural compounds and calculation of thermodynamic properties. Eur J Miner 5:281–295
Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383
Inden G (1981) The role of magnetism in the calculation of phase diagrams. Physica 103B:82–100
Jacobs MHG, de Jong BHWS (2005) Quantum-thermodynamic treatment of intrinsic anharmonicity; Wallace’s theorem revisited. Phys Chem Miner 32:614–626
Jacobs MHG, de Jong BHWS (2007) Placing constraints on phase equilibria and thermophysical properties in the system MgO-SiO2 by a thermodynamically consistent vibrational method. Geochim Cosmochim Acta 71:3630–3655
Jacobs MHG, de Jong BHWS (2009) Thermodynamic mixing properties of olivine derived from lattice vibrations. Phys Chem Miner 36:365–389
Jacobs MHG, Schmid-Fetzer R, van den Berg AP (2013) An alternative use of Kieffer’s lattice dynamics model using vibrational density of states for constructing thermodynamic databases. Phys Chem Miner 40:207–227
Jacobs MHG, Schmid-Fetzer R, van den Berg AP (2017) Phase diagrams, thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states: an application to MgO-SiO2. Phys Chem Miner 44:43–62
Jacobs MHG, Schmid-Fetzer R, van den Berg AP (2019) Thermophysical properties and phase diagrams in the system MgO-SiO2-FeO at upper mantle and transition zone conditions derived from a multiple-Einstein method. Phys Chem Miner 46:513–534
Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 3. Lattice dynamics and an approximation for minerals with application to simple substances and framework silicates. Rev Geophys Space Phys 17:35–59
Liebermann RC (1976) Elasticity of ilmenites. Phys Earth Planet Inter 12:P5–P10
Liferovich RP, Mitchell RH (2006) The pyrophanite-geikielite solid solution series: crystal structures of the Mg1-xZnxTiO3 series (0<x<0.7). Can Miner 44:1099–1107
Lin Y, Tronche EJ, Steenstra ES, van Westrenen W (2017a) Evidence for an early wet moon from experimental crystallization of the lunar magma ocean. Nat Geosci 10:14–18
Lin Y, Tronche EJ, Steenstra ES, van Westrenen W (2017b) Experimental constraints on the solidification of a nominally dry lunar magma ocean. Earth Planet Sci Lett 471:104–116
Lin Y, Hui H, Xia X, Shang S, van Westrenen W (2020) Experimental constraints on the solidification of a hydrous lunar magma ocean. Meteorit Planet Sci 55(1):207–230
Linton JA, Fei Y, Navrotsky A (1999) The MgTiO3-FeTiO3 join at high pressure and temperature. Am Miner 84:1595–1603
Lock SJ, Stewart ST, Petaev M, Leinhardt Z, Mace MT, Jacobsen SB, Ćuk M (2018) The origin of the moon within a terrestrial synestia. J Geophys Res Planets 123:910–951
Lucey P, Korotev RL, Gillis JJ, Taylor LA, Lawrence D, Campbell BA, Elphic R, Feldman B, Hood LL, Hunten D, Mendillo M, Noble S, Papike JJ, Reedy RC, Lawson S, Prettyman T, Gasnault O, Maurice S (2006) Understanding the lunar surface and space-moon interactions. Rev Mineral Geochem 60:83–219
MacChesney JB, Muan A (1961) Phase equilibria at liquidus temperatures in the system iron oxide—titanium oxide at low oxigen pressures. Am Miner 16:572–582
Maurice M, Tosi N, Schwinger S, Breuer D, Kleine T (2020) A long-lived magma ocean on a young Moon. Sci Adv 6(28):1–10
Ming LC, Kim YH, Uchida T, Wang Y, Rivers M (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Miner 91:120–126
Nakajima M, Stevenson DJ (2018) Inefficient volatile loss from the moon-forming disk: reconciling the giant impact hypothesis and a wet moon. Earth Planet Sci Lett 487:117–126
Naylor BF, Cook OA (1946) High-temperature heat contents of the metatitanates of calcium, iron and magnesium. J Amer Chem Soc 68:1003–1005
Nishio-Hamane D, Zhang M, Yagi T, Ma Y (2012) High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am Miner 97:568–572
Okada T, Narita T, Nagai T, Yamanaka T (2008) Comparative Raman spectroscopy study on ilmenite-type MgSiO3 (akimotoite), MgGeO3, and MgTiO3 (geikielite) at high temperatures and high pressures. Am Miner 93:39–47
Parthasarathy G (2007) High-temperature electrical resistivity and heat capacity studies on nano-crystalline geikielite. Mater Lett 61:3208–3210
Rapp JF, Draper DS (2018) Fractional crystallization of the lunar magma ocean: updating the dominant paradigm. Meteorit Planet Sci 53(7):1432–1455
Raymond KN, Wenk HR (1971) Lunar ilmenite (refinement of the crystal structure). Contrib Miner Pertrol 30:135–140
Reynard B, Guyot B (1994) High-temperature properties of geikielite (MgTiO3-ilmenite) from high-temperature high-pressure Raman spectroscopy–some implications for MgSiO3-ilmenite. Phys Chem Miner 21:441–450
Ribeiro RAP, de Lázaro SR (2014) Structural, electronic and elastic properties of FeBO3 (B=Ti, Sn, Si, Zr) ilmenite: a density functional theory study. RSC Adv 4:59839–59846
Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar and at higher temperatures. US Geol Surv Bull 456:266–267
Robie RA, Haselton HT Jr, Hemingway BS (1989) Heat capacities and entropies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite). J Chem Thermodyn 21:743–749
Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol Surv Bull No. https://doi.org/10.3133/b2131
Saxena SK (1996) Earth mineralogical model: gibbs free energy minimization computation in the system MgO-FeO-SiO2. Geochim Cosmochim Acta 60(1):2379–2395
Shindo I (1980) Determination of the phase diagram by the slow cooling float zone method: the system MgO-TiO2. J Cryst Growth 50:839–851
Shomate CH (1946) Heat capacities at low temperatures of the metatitanates of iron, calcium and magnesium. J Amer Chem Soc 68:964–966
Snyder GA, Taylor LA, Neal CR (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochimica Cosmochimica Acta 56:3809–3823
Steenstra ES, Rai N, Knibbe JS, Lin YH, van Westrenen W (2016) New geochemical models of the core formation in the moon from metal-silicate partitioning of 15 siderophile elements. Earth Planet Sci Lett 441:1–9
Steenstra ES, Berndt J, Klemme S, Fei Y, van Westrenen W (2020) A possible high-temperature origin of the moon and its geochemical consequences. Earth Planet Sci Lett 538:116222
Stegman DR, Jellinek A, Zatman S, Baumgardner JR, Richards MA (2003) An early lunar core dynamo driven by thermochemical mantle convection. Nature 421:143–146
Stewart DB, Appleman DE, Huebner JS, Clark JR (1970) Crystallography of some lunar plagioclase. Science 167:634–638
Taran MN (2019) Electronic intervalence Fe2++Ti4+→Fe3++Ti3+ charge-transfer transition in ilmenite. Phys Chem Miner 46:839–843
Taylor SR (1982) Planetary science: a lunar perspective. Lunar and Planetary Institute, Houston, p 481
Thorpe AN, Minkin JA, Senftle FE, Alexander C, Briggs C, Evans HT Jr, Nord GL Jr (1977) Cell dimensions and antiferromagnetism of lunar and terrestrial ilmenite single crystals. J Phys Chem Solids 38:115–123
Tokle L, Hirth G, Raterron P, Liang Y, Dygert N (2021) The effect of pressure and Mg-contents on ilmenite rheology: Implications for lunar cumulate mantle overturn. J Geophys Res Planets. https://doi.org/10.1029/2020JE006494
Tronche EJ, van Kan PM, de Vries J, Wang Y, Sanehira T, Li J, Chen B, Gao L, Klemme S, McCammon CA, van Westrenen W (2010) Thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressure and temperatures. Am Miner 95:1708–1716
Tschauner O, Ma C, Newville MG, Lanzirotti A (2020) Structure analysis of natural wangdaodeite-LiNbO3-type FeTiO3. Minerals 10(1072):1–12
Tuval T, Rosen BA, Zabicky J, Kimmel G, Dilman H, Shneck RZ (2020) Thermal expansion of MgTiO3 made by sol-gel technique at temperature range 25–890 °C. Curr Comput-Aided Drug Des 10(887):2–11
Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geophys Res 92:9319–9325
Wechsler BA, Navrotsky A (1984) Thermodynamics and structure chemistry of compounds in the system MgO-TiO2. J Solid State Chem 55:165–180
Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am Miner 69:176–185
Wechsler BA, von Dreele RB (1989) Structure refinements of Mg2TiO4, MgTiO3 and MgTi2O5 by time-of-flight neutron powder diffraction. Acta Cryst B45:542–549
Wilson NC, Muscat J, Mkhonto D, Ngoepe PE, Harrison NM (2005) Structure and properties of ilmenite from first principles. Phys Rev B 71(075202):1–9
Wu X, Steinle-Neumann G, Narygina O, Kantor I, McCammon C, Pascarelli S, Aquilanti G, Dubrovinsky L (2009) Iron oxidation state of FeTiO3 under high pressure. Phys Rev B 79(094106):1–7
Wu X, Qin S, Dubrovinsky L (2010) Structural characterization of the FeTiO3-MgTiO3 solid solution. J Solid State Chem 183:2483–2489
Yamanaka T, Komatsu Y, Sugahara M, Nagai T (2005) Structure change of MgSiO3, MgGeO3, and MgTiO3 ilmenites under compression. Am Miner 90:1301–1307
Yamanaka T, Komatsu Y, Nomori H (2007) Electron density distribution of FeTiO3 ilmenite under high pressure analyzed by MEM using single crystal diffraction intensities. Phys Chem Miner 34:307–318
Yu S, Tosi N, Schwinger S, Maurice M, Breuer D, Xiao L (2019) Overturn of ilmenite-bearing cumulates in a rheologically weak lunar mantle. J Geophys Res Planets 124:418–436
Zabicky J, Kimmel G, Goncharov E, Guirado E (2009) Magnesium titanate phases from xerogels by hot stage X-ray powder diffraction. Z Krist Suppl 30:347–352
Zhang N, Parmentier EM, Liang YA (2013) A 3-D numerical study of the thermal evolution of the moon after cumulate mantle overturn: the importance of rheology and core solidification. J Geophys Res Planets 118:1789–1804
Zhang N, Dygert N, Liang Y, Parmentier EM (2017) The effect of ilmenite viscosity on the dynamics and evolution of an overturned lunar cumulate mantle. J Geophys Res Lett 44:6543–6552
Zhao Y, de Vries J, van den Berg AP, Jacobs MHG, van Westrenen W (2019) The participation of ilmenite-bearing cumulates in lunar mantle overturn. Earth Planet Sci Lett 511:1–11
Zhong S, Parmentier EM, Zuber MT (2000) A dynamic origin for the global asymmetry of lunar mare basalts. Earth Planet Sci Lett 177:131–140