Thermodynamic mechanism of stability and polymorphic transformation behaviors of enantiotropic polymorphs of glycolide

The Journal of Chemical Thermodynamics - Tập 149 - Trang 106145 - 2020
Hao Liu1, Yongli Wang1,2, Yang Li1, Zhixin Zheng1, Xin Huang1,2, Ting Wang1,2, Hongxun Hao1,2
1National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Tài liệu tham khảo

Bond, 2009, Polymorphism in molecular crystals, Curr. Opin. Solid State Mater. Sci., 13, 91, 10.1016/j.cossms.2009.06.004 Kobayashi, 2000, Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate, Int. J. Pharm., 193, 137, 10.1016/S0378-5173(99)00315-4 Llinàs, 2008, Polymorph control: past, present and future, Drug Discov. Today, 13, 198, 10.1016/j.drudis.2007.11.006 Hermanto, 2007, Robust optimal control of polymorphic transformation in batch crystallization, AIChE J., 53, 2643, 10.1002/aic.11266 Blagden, 2007, Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates, Adv. Drug. Deliv. Rev., 59, 617, 10.1016/j.addr.2007.05.011 Foster, 2017, Pharmaceutical polymorph control in a drug-mimetic supramolecular gel, Chem. Sci., 8, 78, 10.1039/C6SC04126D Day, 2004, Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds, Biomaterials, 25, 5857, 10.1016/j.biomaterials.2004.01.043 Pillai, 2010, Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance, J. Biomater. Appl., 25, 291, 10.1177/0885328210384890 Lebedev, 1988, Thermodynamics of 4-methylcyclohexene, glycollide, and 1,1,3,3,5,5-hexaethylcyclotrisiloxane from 13.4 to 400 K, J. Chem. Thermodyn., 20, 1383, 10.1016/0021-9614(88)90032-8 I.B. Hutchison, A. Delori, X. Wang, K.V. Kamenev, A.J. Urquhart, D.H. Iain, Oswald CCDC 1043575: Experimental Crystal Structure Determination, 2015. Huang, 2017, Thermodynamic properties of enantiotropic polymorphs of glycolide, J. Chem. Thermodyn., 111, 106, 10.1016/j.jct.2017.03.011 Li, 2018, Estimation and confirmation of the thermodynamic stability relationships of the enantiotropic polymorphs of glycolide, J. Chem. Thermodyn., 118, 26, 10.1016/j.jct.2017.10.011 Bisker-Leib, 2003, Modeling crystal shape of polar organic materials: applications to amino acids, Cryst. Growth Des., 3, 221, 10.1021/cg025538q Tyunina, 2014, Enthalpy of sublimation of natural aromatic amino acids determined by Knudsen's effusion mass spectrometric method, J. Chem. Thermodyn., 74, 221, 10.1016/j.jct.2014.02.003 Ouvrard, 2003, Can we predict lattice energy from molecular structure?, Acta Crystallogr. Sect. B: Struct. Sci., 59, 676, 10.1107/S0108768103019025 Singh, 2014, Predicting lattice energy and structure of molecular crystals by first-principles method: role of dispersive interactions, J. Cryst. Growth, 396, 14, 10.1016/j.jcrysgro.2014.03.012 M.W. Chase, NIST-JANAF Thermochemical Tables, fourth ed., 1998. Emel' Yanenko, 2010, Thermodynamic properties of glycolic acid and glycolide, Russ. J. Phys. Chem. A, 84, 1301, 10.1134/S0036024410080054 Burger, 1979, On the polymorphism of pharmaceuticals and other molecular crystals. II, Microchim. Acta, 72, 259, 10.1007/BF01197379 Starink, 2003, he determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404, 163, 10.1016/S0040-6031(03)00144-8