Nghiên cứu nhiệt động học về các hỗn hợp aqueous của dung môi eutectic sâu choline chloride/propylene glycol tại T = (293.15 đến 313.15) K

Aynaz Zarghampour1, Parisa Jafari1, Elaheh Rahimpour1,2, Abolghasem Jouyban1
1Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
2Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Tóm tắt

Nghiên cứu này tập trung vào các đặc điểm lý hóa của hỗn hợp dung môi eutectic sâu (DES) choline chloride/propylene glycol và nước, bằng cách xác định các giá trị độ dày của chúng trong trạng thái đơn và hỗn hợp ở nhiều nhiệt độ nằm trong khoảng 293.15–318.15 K. Dữ liệu độ dày thu được từ các phép đo đã được sử dụng để tính toán nhiều đại lượng như thể tích mol dư, thể tích mol, thể tích mol bề ngoài, độ nở bề ngoài giới hạn, và hệ số giãn nở nhiệt isobaric. Hơn nữa, các độ dày thực nghiệm đã được điều chỉnh theo một số phương trình toán học như Jouyban-Acree, Jouyban-Acreevan’t Hoff, Jouyban-Acree-van’t Hoff đã sửa đổi, Redlich–Kister và Emmerling. Các nghiên cứu loại này có thể cung cấp hiểu biết hữu ích về tương tác solute–solvent trong các dung dịch DES, đặc biệt liên quan đến ứng dụng mới của chúng trong việc hòa tan thuốc.

Từ khóa

#dịch dung môi #dung môi eutectic sâu #tương tác solute–solvent #ứng dụng dược phẩm #đo độ dày

Tài liệu tham khảo

Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (DESs) and their applications. Chem Rev. 2014;114(21):11060–82. https://doi.org/10.1021/cr300162p. Abbott AP, Capper G, Davies DL, et al. Novel solvent properties of choline chloride/urea mixtures. Chem comm. 2003;1:70–1. https://doi.org/10.1039/B210714G. Jhong H-R, Wong DS-H, Wan C-C, et al. A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun. 2009;11(1):209–11. https://doi.org/10.1016/j.elecom.2008.11.001. Singh BS, Lobo HR, Shankarling GS. Choline chloride based eutectic solvents: magical catalytic system for carbon–carbon bond formation in the rapid synthesis of β-hydroxy functionalized derivatives. Catalysis Comm. 2012;24:70–4. https://doi.org/10.1016/j.catcom.2012.03.021. Dai Y, Witkamp G-J, Verpoorte R, et al. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015;187:14–9. https://doi.org/10.1016/j.foodchem.2015.03.123. Paiva A, Craveiro R, Aroso I, et al. Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng. 2014;2(5):1063–71. https://doi.org/10.1021/sc500096j. Azizi N, Dezfuli S, Hahsemi MM. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction. Sci World J. 2012. https://doi.org/10.1100/2012/908702. Haghbakhsh R, Raeissi S. A study of non-ideal mixtures of ethanol and the (1 choline chloride+ 2 ethylene glycol) deep eutectic solvent for their volumetric behaviour. J Chem Thermodyn. 2020;150: 106219. https://doi.org/10.1016/j.jct.2020.106219. Ghbakhsh R, Raeissi S. Experimental investigation on the volumetric properties of mixtures of the deep eutectic solvent of Ethaline and methanol in the temperature range of 283.15 to 323.15 K. J Chem Thermodyn. 2020;147:106124. https://doi.org/10.1016/j.jct.2020.106124. Leron RB, Li M-H. High-pressure volumetric properties of choline chloride–ethylene glycol based deep eutectic solvent and its mixtures with water. Thermochim Acta. 2012;546:54–60. https://doi.org/10.1016/j.tca.2012.07.024. Yadav A, Pandey S. Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K. J Chem Eng Data. 2014;59(7):2221–9. https://doi.org/10.1021/je5001796. Yadav A, Kar JR, Verma M, et al. Densities of aqueous mixtures of (choline chloride+ethylene glycol) and (choline chloride+malonic acid) deep eutectic solvents in temperature range 283.15–363.15K. Thermochim Acta. 2015;600:95–101. https://doi.org/10.1016/j.tca.2014.11.028. Haghbakhsh R, Duarte ARC, Raeissi S. Volumetric investigation of aqueous mixtures of the choline chloride + phenol (1:4) deep eutectic solvent. J Chem Thermodynam. 2021;158: 106440. https://doi.org/10.1016/j.jct.2021.106440. Kim K-S, Park BH. Volumetric properties of solutions of choline chloride+ glycerol deep eutectic solvent with water, methanol, ethanol, or iso-propanol. J Mol Liq. 2018;254:272–9. https://doi.org/10.1016/j.molliq.2018.01.087. Moghimi M, Roosta A. Physical properties of aqueous mixtures of (choline chloride+ glucose) deep eutectic solvents. J Chem Thermodyn. 2019;129:159–65. https://doi.org/10.1016/j.jct.2018.09.029. Shekaari H, Zafarani-Moattar MT, Mokhtarpour M, et al. Volumetric and compressibility properties for aqueous solutions of choline chloride based deep eutectic solvents and Prigogine–Flory–Patterson theory to correlate of excess molar volumes at T=(293.15 to 308.15) K. J Mol Liq. 2019;289:111077. https://doi.org/10.1016/j.molliq.2019.111077. Mjalli FS, Ahmad O. Density of aqueous choline chloride-based ionic liquids analogues. Thermochim Acta. 2017;647:8–14. https://doi.org/10.1016/j.tca.2016.11.008. Sedghamiz M, Raeissi S. Physical properties of deep eutectic solvents formed by the sodium halide salts and ethylene glycol, and their mixtures with water. J Mol Liq. 2018;269:694–702. https://doi.org/10.1016/j.molliq.2018.08.045. Mokhtarpour M, Shekaari H. Measurement and correlation of thermophysical properties in aqueous solutions of some novel bio-based deep eutectic solvents (lactic acid/amino acids) at T = (298.15 to 313.15) K. J Chem Thermodyn. 2020;144:106051. https://doi.org/10.1016/j.jct.2020.106051. LaKind JS, McKenna EA, Hubner RP, Tardiff R. A review of the comparative mammalian toxicity of ethylene glycol and propylene glycol. Crit Rev Toxicol. 1999;29(4):331–65. https://doi.org/10.1080/10408449991349230. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13(9):1257–75. https://doi.org/10.1080/17425247.2016.1182485. Omar KA, Sadeghi R. Physicochemical properties of deep eutectic solvents: a review. J Mol Liq. 2022;360: 119524. https://doi.org/10.1016/j.molliq.2022.119524. Rogošić M, Kučan KZ. Deep eutectic solvent based on choline chloride and propylene glycol as a potential medium for extraction denitrification of hydrocarbon fuels. Chem Eng Res Des. 2020;161:45–57. https://doi.org/10.1016/j.cherd.2020.06.012. Dean JA. Lange’s handbook of chemistry. 15th ed. New York: McGraw-Hill; 1999. Sánchez PB, González B, Salgado J, et al. Physical properties of seven deep eutectic solvents based on l-proline or betaine. J Chem Thermodyn. 2019;131:517–23. https://doi.org/10.1016/j.jct.2018.12.017. Jouyban A, Acree WE Jr. A single model to represent physico-chemical properties of liquid mixtures at various temperatures. J Mol Liq. 2021;323: 115054. https://doi.org/10.1016/j.molliq.2020.115054. Jouyban A, Fathi-Azarbayjani A, Khoubnasabjafari M, et al. Mathematical representation of the density of liquid mixtures at various temperatures using Jouyban-Acree model. Indian J Chem A. 2005;44:1553–60. Fathi-Azarbayjani A, Abbasi M, Vaez-Gharamaleki J, et al. Measurement and correlation of deferiprone solubility: investigation of solubility parameter and application of van’t Hoff equation and Jouyban-Acree model. J Mol Liq. 2016;215:339–44. https://doi.org/10.1016/j.molliq.2015.12.005. Ma H, Qu Y, Zhou Z, et al. Solubility of thiotriazinone in binary solvent mixtures of water + methanol and water + ethanol from (283 to 330) K. J Chem Eng Data. 2012;57(8):2121–7. https://doi.org/10.1021/je201149u. Gao Q, Zhu P, Zhao H, et al. Solubility, Hansen solubility parameter, solvent effect and preferential solvation of benorilate in aqueous mixtures of isopropanol, N, N-dimethylformamide, ethanol and N-methyl-2-pyrrolidinone. J Chem Thermodyn. 2021;161: 106517. https://doi.org/10.1016/j.jct.2021.106517. Acree WE Jr. Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochim Acta. 1992;198(1):71–9. https://doi.org/10.1016/0040-6031(92)85059-5. Emmerling U, Figurski G, Rasmussen P. Densities and kinematic viscosities for the systems benzene + methyl formate, benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate. J Chem Eng Data. 1998;43(3):289–92. https://doi.org/10.1021/je970225y. Yadav A, Trivedi S, Rai R, et al. Densities and dynamic viscosities of (choline chloride+glycerol) deep eutectic solvent and its aqueous mixtures in the temperature range (283.15–363.15)K. Fluid Phase Equilib. 2014;367:135–42. https://doi.org/10.1016/j.fluid.2014.01.028. Leron RB, Soriano AN, Li M-H. Densities and refractive indices of the deep eutectic solvents (choline chloride+ethylene glycol or glycerol) and their aqueous mixtures at the temperature ranging from 298.15 to 333.15K. J Taiwan Inst Chem. 2012;43(4):551–7. https://doi.org/10.1016/j.jtice.2012.01.007. Roux A, Musbally GM, Perron G, et al. Apparent molal heat capacities and volumes of aqueous electrolytes at 25 °C: NaClO3, NaClO4, NaNO3, NaBr O3, NaIO3, KClO3, KBrO3, KIO3, NH4NO3, NH4Cl, and NH4ClO4. Can J Chem. 1978;56(1):24–8. https://doi.org/10.1139/v78-004. Redlich O, Meyer DM. The molal volumes of electrolytes. Chem Rev. 1964;64(3):221–7. https://doi.org/10.1021/cr60229a001. Bahadur I, Deenadayalu N. Apparent molar volume and isentropic compressibility for the binary systems methyltrioctylammonium Bis(trifluoromethylsulfonyl)imide + methyl acetate or methanol and (methanol + methyl acetate) at T=298.15, 303.15, 308.15 and 313.15 K and atmospheric pressure. J Solut Chem. 2011;40(9):1528. https://doi.org/10.1007/s10953-011-9740-0. Wang H, Wang J, Zhang S. Apparent molar volumes and expansivities of ionic liquids [Cnmim]Br (n = 4, 8, 10, 12) in dimethyl sulfoxide. J Chem Eng Data. 2012;57(7):1939–44. https://doi.org/10.1021/je300017m. Harned HS BBOR. The physical chemistry of electrolytic solutions, Reinhold, New York: Amazon; 1958. Zafarani-Moattar MT, Shekaari H. Apparent molar volume and isentropic compressibility of ionic liquid 1-butyl-3-methylimidazolium bromide in water, methanol, and ethanol at T = (298.15 to 318.15)K. J Chem Thermodyn. 2005;37(10):1029–35. https://doi.org/10.1016/j.jct.2005.01.009. Klofutar C, Horvat J, Rudan-Tasj D. Apparent molar volume and apparent molar expansibility of sodium saccharin, potassium acesulfame and aspartame. Acta Chim Slov. 2006;53:274–83.