Thermodynamic assessment of non-catalytic Ceria for syngas production by methane reduction and CO2 + H2O oxidation

Archishman Bose1,2, Azharuddin Farooqui1,3, Domenico Ferrero1, Massimo Santarelli1, Jordi Llorca3
1Energy Department (DENERG), Politecnico di Torino, Turin, Italy
2Marine and Renewable Energy Research (MaREI) Centre, Environmental Research Institute, School of Engineering and Food Science, University College Cork, Cork, Ireland
3Institute of Energy Technologies, Department of Chemical Engineering, Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Barcelona, Spain

Tóm tắt

Chemical looping syngas production is a two-step redox cycle with oxygen carriers (metal oxides) circulating between two interconnected reactors. In this paper, the performance of pure CeO2/Ce2O3 redox pair was investigated for low-temperature syngas production via methane reduction together with identification of optimal ideal operating conditions. Comprehensive thermodynamic analysis for methane reduction and water and CO2 splitting was performed through process simulation by Gibbs free energy minimization in ASPEN Plus®. The reduction reactor was studied by varying the CH4/CeO2 molar ratio between 0.4 and 4 along with the temperature from 500 to 1000 °C. In the oxidation reactor, steam and carbon dioxide mixture oxidized the reduced metal back to CeO2, while producing simultaneous streams of CO and H2 respectively. Within the oxidation reactor, the flow and composition of the mixture gas were varied, together with reactor temperature between 500 and 1000 °C. The results indicate that the maximum CH4 conversion in the reduction reactor is achieved between 900 and 950 °C with CH4/CeO2 ratio of 0.7–0.8, while, for the oxidation reactor, the optimal condition can vary between 600 and 900 °C based on the requirement of the final product output (H2/CO). The system efficiency was around 62% for isothermal operations at 900 °C and complete redox reaction of the metal oxide.

Tài liệu tham khảo

Ackermann, S., Sauvin, L., Castiglioni, R., Rupp, J.L.M., Scheffe, J.R., Steinfeld, A.: Kinetics of CO2 reduction over nonstoichiometric ceria. J. Phys. Chem. C 119(29), 16452–16461 (2015). https://doi.org/10.1021/acs.jpcc.5b03464 Agrafiotis, C., Roeb, M., Sattler, C.: A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles. Renew. Sustain. Energy Rev. 42, 254–285 (2015). https://doi.org/10.1016/j.rser.2014.09.039 Alonso, E., Romero, M.: Review of experimental investigation on directly irradiated particles solar reactors. Renew. Sustain. Energy Rev. 41, 53–67 (2015). https://doi.org/10.1016/j.rser.2014.08.027 Ambrosini, A., Eric N. Coker, Anthony, M., Mark, A., James A.O., James E.M.: Oxide materials for thermochemical CO2 splitting using concentrated solar energy vision : sunshine to petrol (2012) Bader, R., Venstrom, L.J., Davidson, J.H., Lipiński, W.: Thermodynamic Analysis of isothermal redox cycling of ceria for solar fuel production. Energy Fuels 27(9), 5533–5544 (2013). https://doi.org/10.1021/ef400132d Cheng, C.Y., Kelsall, G.H., Kleiminger, L.: Reduction of CO2 to CO at Cu-ceria-gadolinia (CGO) cathode in solid oxide electrolyser. J. Appl. Electrochem. 43(11), 1131–1144 (2013). https://doi.org/10.1007/s10800-013-0566-x Chuayboon, S., Stéphane, A., Sylvain, R.: Syngas production via solar-driven chemical looping methane reforming from redox cycling of ceria porous foam in a volumetric solar reactor. Chem Eng J 2, 56 (2018). https://doi.org/10.1016/j.cej.2018.09.072 Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., Steinfeld, A.: High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012), 1797–1801 (2010). https://doi.org/10.1126/science.1197834 Chueh, W.C., Haile, S.M.: A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 368(1923), 3269–3294 (2010). https://doi.org/10.1098/rsta.2010.0114 Collins-Martinez, V., Bretado, M.E., Zaragoza, M.M., Gutiérrez, J.S., Ortiz, A.L.: Absorption enhanced reforming of light alcohols (methanol and ethanol) for the production of hydrogen: thermodynamic modeling. Int. J. Hydrogen Energy 38(28), 12539–12553 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.146 Davenport, T.C., Kemei, M., Ignatowich, M.J., Haile, S.M.: Interplay of material thermodynamics and surface reaction rate on the kinetics of thermochemical hydrogen production. Int. J. Hydrogen Energy 42(27), 16932–16945 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.184 Davenport, T.C., Yang, C.K., Christopher, J., Michael, J.: Implications of exceptional material kinetics on thermochemical fuel production rates. Energy Technol 4, 6 (2016). https://doi.org/10.1002/ente.201500506 Daza, Y.A., Kent, R.A., Yung, M.M., Kuhn, J.N.: Carbon dioxide conversion by reverse water-gas shift chemical looping on perovskite-type oxides. Ind. Eng. Chem. Res. 53(14), 5828–5837 (2014). https://doi.org/10.1021/ie5002185 Demidov, A.I., Markelov, I.A.: Thermodynamics of interaction of iron oxides and carbon monoxide. Russ. J. Appl. Chem. 84(2), 196–198 (2011). https://doi.org/10.1134/S1070427211020054 Diver, R.B., Miller, J.E., Allendorf, M.D., Siegel, N.P., Hogan, R.E.: Solar thermochemical water-splitting ferrite-cycle heat engines. J. Sol. Energy Eng. 130(4), 041001 (2008). https://doi.org/10.1115/1.2969781 Ermanoski, I., Siegel, N., Stechel, E.: A new reactor concept for efficient solar-thermochemical fuel production. J. Sol.Energy Eng. 135(3), 31002 (2013). https://doi.org/10.1115/1.4023356 Fathi, M., Bjorgum, E., Viig, T., Rokstad, O.A.: Partial oxidation of methane to synthesis gas. Catal. Today 63(2–4), 489–497 (2000). https://doi.org/10.1007/BF00774718 Furler, P, Scheffe, J., Marxer, D., Steinfeld, A.: Solar reactors for thermochemical CO2 and H2O splitting via metal oxide redox reactions. In SFERA II SUMMER SCHOOL, Odeillo, France, France (2014). https://sfera2.sollab.eu/uploads/images/networking/SFERA SUMMER SCHOOL 2014 - PRESENTATIONS/Solar Reactor Reduction - Philipp FURLER.pdf Furler, P., Scheffe, J., Gorbar, M., Moes, L., Vogt, U., Steinfeld, A.: Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. Energy Fuels 26(11), 7051–7059 (2012). https://doi.org/10.1021/ef3013757 Galvita, V., Sundmacher, K.: Hydrogen production from methane by steam reforming in a periodically operated two-layer catalytic reactor. Appl. Catal. A 289(2), 121–127 (2005). https://doi.org/10.1016/j.apcata.2005.04.053 Gokon, N., Toshinori, S., Tatsuya, K.: Oxygen and hydrogen productivities and repeatable reactivity of 30-Mol%-Fe-, Co-, Ni-, Mn-doped CeO2-Δ for thermochemical two-step water-splitting cycle. Energy 90, 1280–1289 (2015). https://doi.org/10.1016/j.energy.2015.06.085 Hartley, U.W., Ngoenthong, N., Cheenkachorn, K., Sornchamni, T.: CO2 to syngas: metal oxides on stainless steel 316L for micro-channel reactor application. In: International Conference on Chemical and Biochemical Engineering Paris (France), 20–22 July 2015, 8–11 (2015). https://www.researchgate.net/profile/Mahdi_Belguidoum/publication/289540155_AbstractsBook_ICCBE2015/links/5690232b08aec14fa557e115/AbstractsBook-ICCBE2015.pdf Ji, H.I., Davenport, T.C., Gopal, C.B., Haile, S.M.: Extreme high temperature redox kinetics in ceria: exploration of the transition from gas-phase to material-kinetic limitations. Phys. Chem. Chem. Phys. 18(31), 21554–21561 (2016). https://doi.org/10.1039/c6cp01935h Ji, H.I., Davenport, T.C., Ignatowich, M.J., Haile, S.M.: Gas-phase vs. material-kinetic limits on the redox response of nonstoichiometric oxides. Phys. Chem. Chem. Phys. 19(10), 7420–7430 (2017). https://doi.org/10.1039/c7cp00449d Jiang, Q., Chen, Z., Tong, J., Yang, M., Jiang, Z., Li, C.: Catalytic function of iroxin the two-step thermochemical CO2-splitting reaction at high temperatures. ACS Catal. 6(2), 1172–1180 (2016). https://doi.org/10.1021/acscatal.5b01774 Kang, K.S., Kim, C.H., Bae, K.K., Cho, W.C., Kim, S.H., Park, C.S.: Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production. Int. J. Hydrogen Energy 35(22), 12246–12254 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.043 Krenzke, P.T., Davidson, J.H.: Thermodynamic analysis of syngas production via the solar thermochemical cerium oxide redox cycle with methane-driven reduction. Energy Fuels 28(6), 4088–4095 (2014). https://doi.org/10.1021/ef500610n Laachir, A., Perrichon, V., Badri, A., Lamotte, J., Catherine, E., Lavalley, J.C., El Fallah, J., et al.: Reduction of CeO2 by hydrogen. J. Chem. Soc., Faraday Trans. 87(10), 1601–1609 (1991) Lapp, J., Davidson, J.H., Lipiński, W.: Heat Transfer analysis of a solid-solid heat recuperation system for solar-driven nonstoichiometric redox cycles. J. Sol. Energy Eng. 135(3), 031004 (2013). https://doi.org/10.1115/1.4023357 Leung, D.Y.C., Giorgio, C., Mercedes Maroto-Valer, M.: An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426–443 (2014). https://doi.org/10.1016/j.rser.2014.07.093 Li, K., Wang, H., Wei, Y.: Syngas generation from methane using a chemical-looping concept: a review of oxygen carriers. J. Chem. 1, 20 (2013). https://doi.org/10.1155/2013/294817 Liu, F.: Cerium oxide promoted oxygen carrier development and scale modeling study for chemical looping comustion. University of Kentucky (2013). https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1029&context=me_etds Lorentzou, S., Karagiannakis, G., Dimitrakis, D., Pagkoura, C., Zygogianni, A., Konstandopoulos, A.G.: Thermochemical redox cycles over Ce-based oxides. Energy Procedia 69, 1800–1809 (2015). https://doi.org/10.1016/j.egypro.2015.03.152 Monazam, E.R., Breault, R.W., Siriwardane, R.: Kinetics of magnetite (Fe3O4) oxidation to hematite (Fe2O3) in air for chemical looping combustion. Ind. Eng. Chem. Res. 53(34), 13320–13328 (2014). https://doi.org/10.1021/ie501536s Montini, T., Melchionna, M., Monai, M., Fornasiero, P.: Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116(10), 5987–6041 (2016). https://doi.org/10.1021/acs.chemrev.5b00603 Nair, M.M., Abanades, S.: Tailoring hybrid nonstoichiometric ceria redox cycle for combined solar methane reforming and thermochemical conversion of H2O/CO2. Energy Fuels 30(7), 6050–6058 (2016). https://doi.org/10.1021/acs.energyfuels.6b01063 Otsuka, K., Wang, Y., Nakamura, M.: Direct conversion of methane to synthesis gas through gas–solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Appl. Catal. A 183(2), 317–324 (1999). https://doi.org/10.1016/S0926-860X(99)00070-8 Otsuka, K., Wang, Y., Sunada, E., Yamanaka, I.: Direct partial oxidation of methane to synthesis gas by cerium oxide. J. Catal. 175(2), 152–160 (1998). https://doi.org/10.1006/jcat.1998.1985 Rihko-Struckmann, L.K., Datta, P., Wenzel, M., Kai Sundmacher, N.V.R.A., Dharanipragada, H.P., Galvita, V.V., Marin, G.B.: Hydrogen and carbon monoxide production by chemical looping over iron-aluminium oxides. Energy Technology 4(2), 304–313 (2016). https://doi.org/10.1002/ente.201500231 Roeb, M., Sattler, C., Klüser, R., Monnerie, N., de Oliveira, L., Konstandopoulos, A.G., Agrafiotis, C., et al.: Solar hydrogen production by a two-step cycle based on mixed iron oxides. J. Sol. Energy Eng. 128(2), 125 (2006). https://doi.org/10.1115/1.2183804 Scheffe, J.R., Welte, M., Steinfeld, A.: Thermal reduction of ceria within an aerosol reactor for H2O and CO2 splitting. Ind. Eng. Chem. Res. 53(6), 2175–2182 (2014). https://doi.org/10.1021/ie402620k Scheffe, J.R., Steinfeld, A.: Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review. Mater. Today 17(7), 341–348 (2014). https://doi.org/10.1016/j.mattod.2014.04.025 Smestad, G.P., Steinfeld, A.: Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts. Ind. Eng. Chem. Res. 51, 11828–11840 (2012). https://doi.org/10.1021/ie3007962 Stamatiou, A., Loutzenhiser, P.G., Steinfeld, A.: Solar syngas production via H2O/CO2-splitting thermochemical cycles with Zn/ZnO and FeO/Fe3O4 redox reactions †. Chem. Mater. 22(3), 851–859 (2010). https://doi.org/10.1021/cm9016529 Steinfeld, A., Scherrer, P., Kuhn, P., Karni, J.: High-temperature solar thermochemistry: production of iron and synthesis gas by Fe304-reduction with methane. Energy 18(3), 239–249 (1993) Steinfeld, A.: Solar thermochemical production of hydrogen—a review. Sol. Energy 78(5), 603–615 (2005). https://doi.org/10.1016/j.solener.2003.12.012 Takacs, M., Ackermann, S., Alexander Bonk, M., Puttkamer, N.-V., Haueter, P., Scheffe, J.R., Vogt, U., Steinfeld, A.: Splitting CO2 with a ceria-based redox cycle in a solardriven thermogravimetric analyzer. AIChE J. 63(4), 1263–1271 (2017) Tescari, S., Agrafiotis, C., Breuer, S., De Oliveira, L., Neises-Von Puttkamer, M., Roeb, M., Sattler, C.: Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts. Energy Procedia 49, 1034–1043 (2013). https://doi.org/10.1016/j.egypro.2014.03.111 Tong, J., Jiang, Q., Chen, Z., Jiang, Z., Li, C.: Two-step thermochemical cycles for CO2 splitting on Zr-doped cobalt ferrite supported on silica. Solar Energy 116, 133–143 (2015). https://doi.org/10.1016/j.solener.2015.04.007 Tuller, H.L.: Solar to fuels conversion technologies: a perspective. Mater. Renew. Sustain. Energy 6(1), 1–16 (2017). https://doi.org/10.1007/s40243-017-0088-2 Venstrom, L.J., Petkovich, N., Rudisill, S., Stein, A., Davidson, J.H.: The effects of morphology on the oxidation of ceria by water and carbon dioxide. J. Sol. Energy Eng. 134(1), 011005 (2012). https://doi.org/10.1115/1.4005119 Venstrom, L.J., De Smith, R.M., Hao, Y., Haile, S.M., Davidson, J.H.: Efficient splitting of CO2 in an isothermal redox cycle based on ceria. Energy Fuels 28(4), 2732–2742 (2014). https://doi.org/10.1021/ef402492e Warren, K.J., Reim, J., Randhir, K., Greek, B., Carrillo, R., Hahn, D.W., Scheffe, J.R.: Theoretical and experimental investigation of solar methane reforming through the nonstoichiometric ceria redox cycle. Energy Technol. 5(11), 2138–2149 (2017). https://doi.org/10.1002/ente.201700083 Warren, K.J., Scheffe, J.R.: Kinetic insights into the reduction of ceria facilitated via the partial oxidation of methane. Mater. Today Energy 9, 39–48 (2018). https://doi.org/10.1016/j.mtener.2018.05.001 Wei, B.: A novel solar-driven system for two-step conversion of CO2 with ceria-based catalysts. KTH Royal Institute of Technology, Stockholm (2014) Welte, M., Barhoumi, R., Zbinden, A., Scheffe, J.R., Steinfeld, A.: Experimental demonstration of the thermochemical reduction of ceria in a solar aerosol reactor. Ind. Eng. Chem. Res. 55(40), 10618–10625 (2016). https://doi.org/10.1021/acs.iecr.6b02853 Welte, M., Warren, K., Scheffe, J.R., Steinfeld, A.: combined ceria reduction and methane reforming in a solar-driven particle-transport reactor. Ind. Eng. Chem. Res. 56(37), 10300–10308 (2017). https://doi.org/10.1021/acs.iecr.7b02738 Yadav, D., Banerjee, R.: A review of solar thermochemical processes. Renew. Sustain. Energy Rev. 54, 497–532 (2016). https://doi.org/10.1016/j.rser.2015.10.026 Zhou, Y., Rahman, M.N.: Effect of redox reaction on the sintering behavior of cerium oxide. Acta Materialia 45(9):3635–39 (1997). http://bdm.unb.br/bitstream/10483/4095/2/2011_RicardoOliveiraMonteiroLopes.pdf