Thermodynamic Characteristics of Lithium Pivalate according to High-Temperature Mass Spectrometry Data
Tóm tắt
The vaporization of lithium pivalate (CH3)3CCOOLi (LiPiv) was studied by the Knudsen effusion method with the mass spectral analysis of the gas phase. The saturated vapor consisted of polynuclear molecules (LiPiv)n, dominated by (LiPiv)2 and (LiPiv)4 molecules. The absolute values of the partial pressures of these molecules and their dependence on temperature were calculated. The standard enthalpies of sublimation of the main components of the saturated vapor were determined to be
$${{\Delta }_{s}}H_{{298}}^{^\circ }$$
(LiPiv)2 = 174.2 ± 6.6 kJ/mol and
$${{\Delta }_{s}}H_{{298}}^{^\circ }$$
(LiPiv)4 = 195.7 ± 4.5 kJ/mol. The enthalpies of dissociation of the dimeric molecules into the monomeric molecules and of the tetrameric molecules into the dimeric molecules were calculated by the second and third laws of thermodynamics; the average values of these enthalpies are
$${{\Delta }_{D}}H_{{298}}^{^\circ }$$
(LiPiv)2 = 175.8 ± 13.5 kJ/mol and
$${{\Delta }_{D}}H_{{298}}^{^\circ }$$
(LiPiv)4 = 155.2 ± 10.0 kJ/mol. The standard enthalpies of formation of LiPiv in the condensed and gas phase were estimated from the known thermodynamic characteristics of lithium acetate and radicals of acetic and pivalic acids:
$${{\Delta }_{f}}H_{{298.15}}^{^\circ }$$
(LiPivsolid) ≤ –804 kJ/mol,
$${{\Delta }_{f}}H_{{298.15}}^{^\circ }$$
(LiPivgas) ≤ –627 kJ/kmol,
$${{\Delta }_{f}}H_{{298.15}}^{^\circ }$$
((LiPiv)2(gas)) ≤ –1430 kJ/mol, and
$${{\Delta }_{f}}H_{{298.15}}^{^\circ }$$
((LiPiv)4(gas)) ≤ –3017 kJ/mol.
Tài liệu tham khảo
N. J. Dudney, Interface (The Electrochemical Society) 17, 44 (2008).
H. Nishide and K. Oyaizu, Science 319, 737 (2008). https://doi.org/10.1126/1151831
W.-G. Choi and S.-G. Yoon, J. Power Sources 125, 236 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.014
T. L. Kulova and A. M. Skundin, Elektrokhim. Energ. 9 (2), 57.
B. Wang, J. B. Bates, F. X. Hart, et al., J. Electrochem. Soc. 143, 3203 (1996). https://doi.org/10.1149/1.1837188
J. B. Bates, N. J. Dudney, B. J. Neudecker, et al., Solid State Ionics 135, 33 (2000). https://doi.org/10.1016/S0167-2738(00)00327-1
J. B. Bates, N. J. Dudney, B. J. Neudecker, et al., J. Electrochem. Soc. 147, 59 (2000). https://doi.org/10.1149/1.1393157
J. B. Bates, N. J. Dudney, G. R. Gruzalski, et al., J. Power Sources 43, 103 (1993). https://doi.org/10.1016/0378-7753(93)80106-Y
X. Yu, J. B. Bates, G. E. Jellison, et al., J. Electrochem. Soc. 144, 524 (1997). https://doi.org/10.1149/1.1837443
N. M. Khoretonenko, Candidate’s Dissertation in Chemistry (Moscow, 1998).
E. White V, Org. Mass Spectrom. 13, 495 (1978). https://doi.org/10.1002/oms.1210130903
K. Matsumoto, Y. Kosugi, M. Yanagisawa, et al., Org. Mass Spectrom. 15, 606 (1980). https://doi.org/10.1002/oms.1210151203
Y. Cao and K. L. Busch, J. Inorg. Chem. 33, 3970 (1994). https://doi.org/10.1021/ic00096a022
E. N. Zorina-Tikhonova, D. S. Yambulatov, M. A. Kiskin, et al., Russ. J. Coord. Chem. 46, 75 (2020). https://doi.org/10.1134/S1070328420020104
D. B. Kayumova, I. P. Malkerova, M. A. Shmelev, et al., Russ. J. Inorg. Chem. 64, 125 (2019). https://doi.org/10.1134/S0036023619010121
N. A. Gribchenkova and A. S. Alikhanyan, J. Alloys Compd. 778, 77 (2019). https://doi.org/10.1016/j.jallcom.2018.11.136
L. N. Gorokhov, Vestn. Mosk. Univ., Ser. Mat., Mekh., Astron., Fiz., Khim., p. 231 (1958).
L. N. Sidorov, M. V. Korobov, and L. V. Zhuravleva, Mass Spectral Thermodynamic Studies (MGU, Moscow, 1985) [in Russian].
J. W. Otvose and D. P. Stevenson, J. Am. Chem. Soc. 78, 546 (1956). https://doi.org/10.1021/ja01584a009
M. Guido and G. Gigli, High Temp. Sci. 7, 122 (1975).
R. T. Meyer and A. W. Lynch, High Temp. Sci. 5, 192 (1973).
Thermodynamic Properties of Individual Substances: Handbook (Nauka, Moscow, 1982), Vol. 4, Book 2 [in Russian].
N. V. Gogoleva, G. N. Kuznetsova, M. A. Shmelev, et al., J. Solid State Chem. 294, 121842 (2020). https://doi.org/10.1016/j.jssc.2020.121842
V. A. Lukyanova, T. S. Papina, K. V. Didenko, et al., J. Therm. Anal. Calorim. 92, 743 (2008). https://doi.org/10.1007/s10973-008-9019-x
L. A. Rudnitskii, Zh. Fiz. Khim. 35, 1853 (1961).
P. Gray and J. C. J. Thynne, Nature (Engl.), 191, 1357 (1961). https://doi.org/10.1038/1911357a0
F. J. Martínez Casado, M. Ramos Riesco, M. I. Redondo, et al., Cryst. Growth Des., 11, 1021 (2011).https://doi.org/10.1021/cg1010133
F. J. Martínez Casado, M. Ramos Riesco, M. V. Garcia Perez, et al., J. Phys. Chem. B 113, 12896 (2009). https://doi.org/10.1021/jp9047715