Thermochemistry of nano-phased titanium dioxides relevant to energy application: A Review
Tài liệu tham khảo
Liu, 2010, Adv. Mater., 22, E28, 10.1002/adma.200903328
Tian, 2019, Adv. Mater., 31
Guo, 2019, Adv. Mater., 31
Shehzad, 2018, J. CO2 Util., 26, 98, 10.1016/j.jcou.2018.04.026
Zhang, 2015, J. Mater. Chem. A, 3, 43, 10.1039/C4TA04996A
Ma, 2021, Energy Environ. Sci.
Zhang, 2019, Nature Energy, 4, 594, 10.1038/s41560-019-0409-z
Zhao, 2017, Chem. Rev., 117, 10121, 10.1021/acs.chemrev.7b00051
Huang, 2006, Science, 312, 254, 10.1126/science.1125877
Shao, 2004, Nature, 431, 170, 10.1038/nature02863
Xiong, 2018, Adv. Funct. Mater., 28
Chen, 2013, Small, 9, 1877, 10.1002/smll.201202601
Matsumoto, 2001, Science, 291, 854, 10.1126/science.1056186
Kim, 2003, Phys. Rev. Lett., 90
Kim, 2005, Phys. Rev. B, 71
Chen, 2009, Chin. J. Catal., 30, 839, 10.1016/S1872-2067(08)60126-6
Liu, 2019, ChemCatChem, 11, 6177, 10.1002/cctc.201901579
Chen, 2020, J. Cleaner Prod., 268
Zhu, 2012, Energy Environ. Sci., 5, 6652, 10.1039/c2ee03410g
Boerio-Goates, 2006, Nano Lett., 6, 750, 10.1021/nl0600169
Zhang, 1998, J. Mater. Chem., 8, 2073, 10.1039/a802619j
Liu, 2014, Chem. Rev., 114, 9559, 10.1021/cr400621z
Levchenko, 2006, Chem. Mater., 18, 6324, 10.1021/cm061183c
Calvin, 2019, J. Mater. Res., 34, 416, 10.1557/jmr.2019.33
Vequizo, 2017, ACS Catalysis, 7, 2644, 10.1021/acscatal.7b00131
Zhang, 2000, J. Phys. Chem. B, 104, 3481, 10.1021/jp000499j
Smith, 2009, Am. Mineral., 94, 236, 10.2138/am.2009.3050
Armstrong, 2004, Angew. Chem. Int. Ed. Engl., 43, 2286, 10.1002/anie.200353571
Noailles, 1999, J. Power Sources, 81, 259, 10.1016/S0378-7753(98)00244-4
Pitna Laskova, 2016, Monatshefte für Chemie - Chemical Monthly, 147, 951, 10.1007/s00706-016-1678-x
Che, 2016, J. Chem. Thermodyn., 93, 45, 10.1016/j.jct.2015.09.018
Feng, 2018, J. Chem. Thermodyn., 119, 127, 10.1016/j.jct.2017.12.016
Feng, 2020, J. Chem. Thermodyn., 145, 10.1016/j.jct.2019.106040
Hu, 2009, Cryst. Growth Des., 9, 3676, 10.1021/cg9004032
Wu, 2001, J. Solid State Chem., 156, 220, 10.1006/jssc.2000.8991
Boerio-Goates, 2013, J. Phys. Chem. C, 117, 4544, 10.1021/jp310993w
Li, 2005, J. Am. Chem. Soc., 127, 8659, 10.1021/ja050517g
Sugimoto, 1997
Sugimoto, 2003, J. Colloid Interface Sci., 259, 43, 10.1016/S0021-9797(03)00036-5
Sugimoto, 2003, J. Colloid Interface Sci., 259, 53, 10.1016/S0021-9797(03)00035-3
Li, 2003, J. Mater. Res., 18, 2664
Wu, 2002, Chem. Mater., 14, 1974, 10.1021/cm0102739
Kasuga, 1998, Langmuir, 14, 3160, 10.1021/la9713816
Kasuga, 1999, Adv. Mater., 11, 1307, 10.1002/(SICI)1521-4095(199910)11:15<1307::AID-ADMA1307>3.0.CO;2-H
Barnard, 2005, Nano Lett., 5, 1261, 10.1021/nl050355m
Li, 2017, Small, 13
Wu, 2004, J. Cryst. Growth, 269, 347, 10.1016/j.jcrysgro.2004.05.023
Qu, 2007, Nanotechnology, 18, 10.1088/0957-4484/18/20/205602
Pradhan, 2003, J. Cryst. Growth, 256, 83, 10.1016/S0022-0248(03)01339-3
Wu, 2005, J. Cryst. Growth, 281, 384, 10.1016/j.jcrysgro.2005.04.018
Burda, 2005, Chem. Rev., 105, 1025, 10.1021/cr030063a
Ranade, 2002, Proc. Natl. Acad. Sci., 99, 6476, 10.1073/pnas.251534898
Finne, 2003, Nature, 424, 1022, 10.1038/nature01880
Levchenko, 2007, J. Phys. Chem. A, 111, 12584, 10.1021/jp076033j
Li, 2004, Appl. Phys. Lett., 85, 2059, 10.1063/1.1790596
Hu, 2013, Nat. Mater., 12, 821, 10.1038/nmat3691
Li, 2011, Sci. China Chem., 54, 876, 10.1007/s11426-011-4291-1
Schliesser, 2015, J. Chem. Thermodyn., 81, 311, 10.1016/j.jct.2014.08.002
Schliesser, 2015, J. Chem. Thermodyn., 81, 298, 10.1016/j.jct.2014.07.025
Shi, 2010, J. Chem. Thermodyn., 42, 1107, 10.1016/j.jct.2010.04.008
Shi, 2011, J. Chem. Thermodyn., 43, 1263, 10.1016/j.jct.2011.03.018
Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0
Kumaravel, 2019, Appl. Catal. B, 244, 1021, 10.1016/j.apcatb.2018.11.080
Rawool, 2021, Chem. Sci., 12, 4267, 10.1039/D0SC06451C
Li, 2015, Energy Environ. Sci., 8, 2377, 10.1039/C5EE01398D
Prieto-Mahaney, 2009, Chem. Lett., 38, 238, 10.1246/cl.2009.238
Lee, 2010, Chem. Mater., 22, 1958, 10.1021/cm902842k
Gao, 2019, Adv. Mater., 31
Li, 2015, Nat. Commun., 6, 5881, 10.1038/ncomms6881
Maeda, 2014, Catal. Sci. Technol., 4, 1949, 10.1039/C4CY00251B
Zhang, 2011, J. Phys. Chem. C, 115, 13820, 10.1021/jp203511z
Fu, 2020, Nanoscale, 12, 4895, 10.1039/C9NR10870J
Ide, 2016, Angew. Chem. Int. Ed. Engl., 55, 3600, 10.1002/anie.201510000
Kho, 2010, J. Phys. Chem. C, 114, 2821, 10.1021/jp910810r
Zang, 2014, J. Mater. Chem. A, 2, 15774, 10.1039/C4TA02082K
Zhang, 2019, Chem. Sci., 10, 8323, 10.1039/C9SC01216H
Lin, 2012, J. Am. Chem. Soc., 134, 8328, 10.1021/ja3014049
Guo, 2013, Chem. Commun. (Camb.), 49, 11752, 10.1039/c3cc47461e
Jang, 2001, J. Nanopart. Res., 3, 141, 10.1023/A:1017948330363
Meng, 2011, Catal. Today, 165, 145, 10.1016/j.cattod.2010.11.086
Mor, 2005, Nano Lett., 5, 191, 10.1021/nl048301k
Peng, 2008, Chem. Mater., 20, 2426, 10.1021/cm071038e
Leung, 2010, ChemSusChem, 3, 681, 10.1002/cssc.201000014
Amano, 2016, Catal. Sci. Tech., 6, 5693, 10.1039/C6CY00296J
Yamashita, 2003, Catal. Today, 84, 191, 10.1016/S0920-5861(03)00273-6
Pan, 2018, Int. J. Hydrogen Energy, 43, 22055, 10.1016/j.ijhydene.2018.10.093
Liu, 2012, Energy Environ. Sci., 5, 9603, 10.1039/c2ee22930g
Yang, 2013, J. Am. Chem. Soc., 135, 17831, 10.1021/ja4076748
Pan, 2016, J. Colloid Interface Sci., 469, 25, 10.1016/j.jcis.2016.02.013
Xu, 2015, J. Mater. Chem. A, 3, 22361, 10.1039/C5TA05953D
Subramanian, 2006, J. Power Sources, 159, 186, 10.1016/j.jpowsour.2006.04.027
Reddy, 2006, Electrochem. Commun., 8, 1299, 10.1016/j.elecom.2006.05.021
Anji Reddy, 2008, Electrochem. Solid State Lett., 11, A132, 10.1149/1.2931973
Armstrong, 2005, Chem. Commun. (Camb.), 2454, 10.1039/b501883h
Lan, 2015, J. Mater. Chem. A, 3, 10038, 10.1039/C5TA01061F
Li, 2017, ACS Appl. Mater. Interfaces, 9, 35917, 10.1021/acsami.7b11652
Liu, 2012, Adv. Mater., 24, 3201, 10.1002/adma.201201036
Yu, 2015, Angew. Chem. Int. Ed. Engl., 54, 4001, 10.1002/anie.201411353
Chen, 2010, J. Am. Chem. Soc., 132, 6124, 10.1021/ja100102y
Liu, 2011, Adv. Mater., 23, 3450, 10.1002/adma.201100599
Zhang, 2014, Angew. Chem. Int. Ed. Engl., 53, 12590, 10.1002/anie.201406476