Thermochemical study of the detonation properties of boron- and aluminum-containing compounds in air and water

Springer Science and Business Media LLC - Tập 33 - Trang 501-520 - 2023
K. A. Byrdin1, S. M. Frolov1,2, P. A. Storozhenko3, S. L. Guseinov3
1Department of Combustion and Explosion, Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences, Moscow, Russia
2Department of Computational Mathematics, Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”, Moscow, Russia
3State Research Center “State Scientific Research Institute of Chemistry and Technology of Organo-Element Compounds” (SRC), Moscow, Russia

Tóm tắt

Contrary to the conventional chemical propulsion systems based on the controlled relatively slow (subsonic) combustion of fuel in a combustor, the operation process in pulsed detonation engines (PDEs) and rotating detonation engines (RDEs) is based on the controlled fast (supersonic) combustion of fuel in pulsed and continuous detonation waves, respectively. One of the most important issues for such propulsion systems is the choice of fuel with proper reactivity and exothermicity required for a sustained and energy-efficient operation process. Presented in the paper are the results of thermodynamic calculations of the detonation parameters of boron- and aluminum-containing compounds (B, B $$_{{2}}$$ H $$_{{6}}$$ , B $$_{{5}}$$ H $$_{{9}}$$ , B $$_{{10}}$$ H $$_{{14}}$$ , Al, AlH $$_{{3}}$$ , Al(C $$_{{2}}$$ H $$_{{5}})_{{3}}$$ , and Al(CH $$_{{3}})_{{3}})$$ in air and water. The results demonstrate the potential feasibility of using the considered compounds as fuels for both air- and water-breathing transportation vehicles powered with PDEs and RDEs. As a verification of the reliability of the calculated results, the detonation parameters of diborane, aluminum, and isopropyl nitrate in air were compared with experimental data available in the literature.

Tài liệu tham khảo

Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current status, and future perspective. Prog. Energy Combust. Sci. 30(6), 545–672 (2004). https://doi.org/10.1016/j.pecs.2004.05.001 Anand, V., Gutmark, E.: Rotating detonation combustors and their similarities to rocket instabilities. Prog. Energy Combust. Sci. 73, 182–234 (2019). https://doi.org/10.1016/j.pecs.2019.04.001 Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propuls. Power 22(6), 1204–1216 (2006). https://doi.org/10.2514/1.17656 Ivanov, V.S., Frolov, S.M., Zangiev, A.E., Zvegintsev, V.I., Shamshin, I.O.: Hydrogen fueled detonation ramjet: conceptual design and test fires at Mach 1.5 and 2.0. Aerosp. Sci. Technol. 109, 106459 (2021). https://doi.org/10.1016/j.ast.2020.106459 Frolov, S.M., Platonov, S.V., Avdeev, K.A., Aksenov, V.S., Ivanov, V.S., Zangiev, A.E., Sadykov, I.A., Tukhvatullina, R.R., Frolov, F.S., Shamshin, I.O.: Pulsed combustion of fuel-air mixture in a cavity above water surface: modeling and experiments. Shock Waves 32(1), 1–10 (2022). https://doi.org/10.1007/s00193-021-01045-3 Frolov, S.M., Platonov, S.V., Avdeev, K.A., Aksenov, V.S., Ivanov, V.S., Zangiev, A.E., Sadykov, I.A., Tukhvatullina, R.R., Frolov, F.S., Shamshin, I.O.: Pulsed combustion of fuel-air mixture in a cavity under the boat bottom: modeling and experiments. Shock Waves 32(1), 11–24 (2022). https://doi.org/10.1007/s00193-021-01046-2 Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O., Tukhvatullina, R.R.: Pulsed detonation hydroramjet: simulations and experiments. Shock Waves 30(3), 221–234 (2020). https://doi.org/10.1007/s00193-019-00906-2 Frolov, S.M., Avdeev, K.A., Aksenov, V.S., Frolov, F.S., Sadykov, I.A., Shamshin, I.O.: Pulsed detonation hydroramjet: design optimization. J. Mar. Sci. Eng. 10, 1171 (2022). https://doi.org/10.3390/jmse10091171 Frolov, S.M., Zvegintsev, V.I., Aksenov, V.S., Bilera, I.V., Kazachenko, M.V., Shamshin, I.O., Gusev, P.A., Belotserkovskaya, M.S.: Detonability of fuel-air mixtures. Shock Waves 30(7–8), 721–729 (2020). https://doi.org/10.1007/s00193-020-00966-9 Sokolik, A.S., Shchelkin, K.I.: Flame propagation in mixtures of methane with oxygen in closed tubes. Zh. Fiz. Khim. IV(1), 109–128 (1933) (in Russian) Sokolik, A.S., Shchelkin, K.I.: Detonability of oxygen mixtures of saturated and aromatic hydrocarbons. Zh. Fiz. Khim. IV(2), 129–131 (1933) (in Russian) Shchelkin, K.I.: Effect of tube roughness on the onset and propagation of detonation in gases. Zh. Exp. Teor. Fiz. 10(7), 823–827 (1940) (in Russian) Lee, J.H.S.: The Detonation Phenomenon. The Cambridge University Press, New York (2008) Frolov, S.M., Gel’fand, B.E.: On the limiting diameter for propagation of gas detonation in tubes. Dokl. USSR Acad. Sci. 312(5), 1177–1180 (1990) Frolov, S.M., Shamshin, I.O., Kazachenko, M.V., Aksenov, V.S., Bilera, I.V., Ivanov, V.S., Zvegintsev, V.I.: Polyethylene pyrolysis products: their detonability in air and applicability to solid-fuel detonation ramjets. Energies 14, 820 (2021). https://doi.org/10.3390/en14040820 Rozing, V.S., Khariton, Y.B.: Termination of detonation of high explosives at a small diameter of the charge. Dokl. Phys. 26, 28–30 (1939) (in Russian) Afanasiev, G.N., Bedov, V.I., Sergienko, O.I.: Detonability of solid explosives with high density. Fiz. Goreniya Vzryva 17(2), 158–159 (1981) (in Russian) Pepekin, V.I., Korsunskii, B.L., Denisaev, A.A.: Initiation of solid explosives by mechanical impact. Combust. Explos. Shock Waves 44(5), 586–590 (2008). https://doi.org/10.1007/s10573-008-0089-7 Pepekin, V.I.: The criterion for estimation of the detonability of organic high explosives. Combust. Explos. 3, 286–291 (2010) Nettleton, M.A.: Gaseous Detonations: Their Nature, Effects and Control. Chapman and Hall, London (1987) Miller, T., Herr, J.: Green rocket propulsion by reaction of Al and Mg powders and water. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, AIAA Paper 2004-4037 (2004). https://doi.org/10.2514/6.2004-4037 Risha, G.A., Son, S.F., Yetter, R.A., Yang, V., Tappan, B.C.: Combustion of nano-aluminum and liquid water. Proc. Combust. Inst. 31, 2029–2036 (2007). https://doi.org/10.1016/j.proci.2006.08.056 Eisen, N.E., Gany, A.: Investigation of a marine water-breathing hybrid ram-rocket motor. J. Propuls. Power 38(3), 370–377 (2022). https://doi.org/10.2514/1.B38590 Xiang, D., Rong, J., He, X., Feng, Z.: Underwater explosion performance of RDX/AP-based aluminized explosives. Cent. Eur. J. Energ. Mater. 14(1), 60–76 (2017). https://doi.org/10.22211/cejem/68443 Liu, J., An, F.-J., Wu, C., Liao, S.-S., Zhou, M., Xue, D.: The early responses of air-backed plate subjected to underwater explosion with aluminized explosives. Def. Technol. 16(3), 642–650 (2020). https://doi.org/10.1016/j.dt.2019.11.003 Shan, F., He, Y., Wang, H., Gao, Z., Chen, P., Fang, Z., Pan, X., Jiao, J.: Influence of afterburn reaction on the underwater explosion of aluminized explosives. J. Appl. Phys. 132, 194701 (2022). https://doi.org/10.1063/5.0125368 Zel’dovich, Y.B., Kompaneets, A.S.: The Theory of Detonation. Gostekhteorizdat, Moscow (1955) (in Russian) Benson, G.E., Genco, R.S., Gerstein, M.: A preliminary experimental and analytical evaluation of diborane as a ram-jet fuel. NACA-RM-E50J04 (1950). https://ntrs.nasa.gov/citations/19930086375 Kaufman, W.B., Gibbs, J.B., Branstetter, J.R.: Preliminary investigation of combustion of diborane in a turbojet combustor. NACA-RM-E52L15 (1957). https://ntrs.nasa.gov/citations/19930087431 Olson, W.T., Breitwieser, R., Gibbons, L.C.: A review of NACA research through 1954 on boron compounds as fuels for jet aircraft (Project Zip). NACA-RM-E55B01 (1957). https://ntrs.nasa.gov/citations/19650073882 Seedhouse, E.: SpaceX: Starship to Mars-The First 20 Years. Springer, Cham (2022) Billig, F.S.: A study of combustion in supersonic streams. Doctoral dissertation, University of Maryland, MD, USA (1964) Frolov, S.M., Basevich, V.Y., Belyaev, A.A., Shamshin, I.O., Aksenov, V.S., Frolov, F.S., Storozhenko, P.A., Guseinov, S.L.: Kinetic model and experiment for self-ignition of triethylaluminum and triethylborane droplets in air. Micromachines 13, 2033 (2022). https://doi.org/10.3390/mi13112033 Schalla, R.L.: Spontaneous Ignition Limits of Pentaborane. National Advisory Committee for Aeronautics, New York (1957) Poling, E., Simons, H.P.: Explosive reaction of diborane in dry and water-saturated air. Ind. Eng. Chem. 50(11), 1695–1698 (1958). https://doi.org/10.1021/ie50587a051 Martin, F.J., Kydd, P.H., Browne, W.G.: Condensation of products in diborane-air detonations. Proc. Symp. (Int.) Combust. 8(1), 633–644 (1961). https://doi.org/10.1016/s0082-0784(06)80555-2 Sample, P., Simons, H.P.: Explosive reactions of diborane in benzenesaturated air. Ind. Eng. Chem. 50(11), 1699–1702 (1958). https://doi.org/10.1021/ie50587a052 Whatley, A.T., Pease, R.N.: Observations on thermal explosions of diborane-oxygen mixtures. J. Am. Chem. Soc. 76(7), 1997–1999 (1954). https://doi.org/10.1021/ja01636a089 Baden, H.C., Bauer, W.H., Wiberley, S.E.: The explosive oxidation of pentaborane. J. Phys. Chem. 62(3), 331–334 (1958). https://doi.org/10.1021/j150561a021 Bauer, W.H., Wiberley, S.E.: Explosive oxidation of boranes. In: Borax to Boranes, Advances in Chemistry, pp. 115–126. American Chemical Society, Washington (1961) Strauss, W.A.: Investigation of the detonation in aluminum powder—oxygen mixtures. AIAA J. 6(9), 1753–1756 (1968). https://doi.org/10.2514/3.4855 Tulis, A.J., Selman, J.R.: Detonation tube studies of aluminum particles dispersed in air. Proc. Symp. (Int.) Combust. 19(1), 655–663 (1982). https://doi.org/10.1016/s0082-0784(82)80240-3 Borisov, A.A., Khasainov, B.A., Saneev, E.L., Fomin, I.B., Khomik, S.V., Veyssiere, B.: On the detonation of aluminum suspensions in air and in oxygen. In: Borisov, A.A. (ed.) Dynamic Structure of Detonation in Gaseous and Dispersed Media, pp. 215–253. Springer, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3548-1_8 Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Study of detonation initiation in unconfined aluminum dust clouds. In: Roy, G., Frolov, S., Kailasanath, K., Smirnov, N. (eds.) Gaseous and Heterogeneous Detonations: Science to Applications, pp. 337–350. ENAS Publications, Moscow (1999) Zhang, F., Grönig, H., van de Ven, A.: DDT and detonation waves in dust-air mixtures. Shock Waves 11(1), 53–71 (2001). https://doi.org/10.1007/pl00004060 Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminum dust-air detonation at elevated pressures. In: Proceedings of the 24th International Symposium on Shock Waves, pp. 795–800. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-27009-6_119 Tulis, A.J., Fochtman, E.G., Heberlein, D.C.: Experimental methods for assessing detonation/deflagration in pyrotechnical dusts. Proceedings of the 7th (International) Pyrotechnics Seminar, vol. 2, pp. 859–877. IIT Research Institute (1980) Heuze, O., Bauer, P., Presles, H.N., Brochet, C.: The equation of state of detonation products and their incorporation into the Quatuor Code II. Proceedings of the 8th Symposium (International) Detonations, Preprints, Albuquerque, New Mexico, pp. 103–110 (1985) Fedorov, A.V., Telenov, E.A.: Initiation of the heterogeneous detonation of aluminum particles dispersed in oxygen. Combust. Explos. Shock Waves 28(3), 83–89 (1992). https://doi.org/10.1007/bf00749645 Veyssiere, B., Khasainov, B.A.: Structure and multiplicity of detonation regimes in heterogeneous hybrid mixtures. Shock Waves 4(3), 171–186 (1994). https://doi.org/10.1007/bf01414983 Khasainov, B.A., Veyssiere, B.: Initiation of detonation regimes in hybrid two-phase mixtures. Shock Waves 6, 9–16 (1996). https://doi.org/10.1007/bf02511399 Fedorov, A.V., Khmel’, T.A., Fomin, V.M.: Non-equilibrium model of steady detonations in aluminum particles—oxygen suspensions. Shock Waves 9(5), 313–318 (1999). https://doi.org/10.1007/s001930050191 Benkiewicz, K., Hayashi, A.K.: Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement. Shock Waves 13, 385–402 (2003). https://doi.org/10.1007/s00193-002-0169-7 Fedorov, A.V., Khmel’, T.A.: Formation and degeneration of cellular detonation in bidisperse gas suspensions of aluminum particles. Combust. Explos. Shock Waves 44, 343–353 (2008). https://doi.org/10.1007/s10573-008-0042-9 Fedorov, A.V., Khmel, T.A., Kratova, Yu.V.: Heterogeneous detonation of monodisperse and polydisperse gas-particle mixtures. In: Frolov, S.M., Zhang, F., Wolansky, P. (eds.) Recent Accomplishments: Explosion Dynamics and Hazards, pp. 273–290. Torus Press, Moscow (2010) Kuznetsov, N.M., Frolov, S.M., Shamshin, I.O., Storozhenko, P.A.: Kinetics of the interaction of triethylaluminum drops with superheated steam: experiment, physicochemical model, and scheme of chemical reactions. Combust. Explos. 13(3), 76–81 (2020). https://doi.org/10.30826/CE20130307 Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics, 4th edn. Wiley, Hoboken (2006) Reynolds, W.C.: The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN. Department of Mechanical Engineering, Stanford University Press, Stanford (1986) https://www.ansys.com/products/fluids/ansys-chemkin-pro. Accessed 27 Mar 2023 JANAF database. https://janaf.nist.gov. Accessed 27 Mar 2023 OpenFOAM database. https://github.com. Accessed 27 Mar 2023 Fowell, P.A.: The heat of formation of some metal alkyls and of some phosphine imines. PhD Thesis, University of Manchester, Manchester (1961) Fic, V.: Some thermodynamic characteristics of triethylaluminum. Chemicky Prumysl. 16(10), 607–610 (1966) Leal, J.P., Martinho Simoes, J.A.: Standard enthalpy of formation of triethylaluminum. Organometallics 12(4), 1442–1444 (1993). https://doi.org/10.1021/om00028a072 Shaulov, Y.K., Shmyreva, G.O., Tubyanskaya, V.S.: Heat of formation of organoaluminum compounds. II. Heat of formation of triethylaluminum, diisobutylaluminum hydrate and diethylaluminum hydrate. Z. Fiz. Khim. 39(1), 105–110 (1965) (in Russian) Pawlenko, S.: Zur Thermochemie der metallorganischen Verbindungen, I. Thermochemische Werte der Aluminiumalkyle: Chemische Berichte 100(11), 3591–3598 (1967) Krupnov, A.A., Pogosbekyan, M.Y.: Thermodynamic properties of triethylaluminum isomers. Combust. Explos. 15(4), 112–122 (2022). https://doi.org/10.30826/CE22150412 Allendorf, M.D., Melius, C.F., Cosic, B., Fontijn, A.: BAC-G2 predictions of thermochemistry for gas-phase aluminum compounds. J. Phys. Chem. A 106(11), 2629–2640 (2002). https://doi.org/10.1021/jp013128r Zhang, F., Murray, S.B., Gerrard, K.B.: Aluminum particles-air detonation at elevated pressures. Shock Waves 15(5), 313–324 (2006). https://doi.org/10.1007/s00193-006-0027-0 Fried, L.E., Howard, W.M., Souers, P.C.: Cheetah 2.0 User’s Manual, Rev. 5, Lawrence Livermore National Lab., Rept. UCRLMA-117541, Livermore, CA (1998) Karnesky, J., Pitz, W.J., Shepherd, J.E.: Detonation in gaseous isopropyl nitrate mixtures. 2007 Fall Meeting of the Western States Section of the Combustion Institute Sandia National Laboratories, Livermore, CA (2007) Curtiss, L.A., Raghavachari, K., Redfern, P.C., Pople, J.A.: Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys. 106(3), 1063–1079 (1997). https://doi.org/10.1063/1.473182 Volokhov, V.M., Zyubina, T.S., Volokhov, A.V., Amosova, E.S., Varlamov, D.A., Lempert, D.B., Yanovskii, L.S.: Quantum chemical simulation of hydrocarbon compounds with high enthalpy. Russ. J. Phys. Chem. B 15, 12–24 (2021). https://doi.org/10.1134/S1990793121010127