Thermochemical hydrogen production from water using reducible oxide materials: a critical review
Tóm tắt
This review mainly focuses on summarizing the different metal oxide systems utilized for water-splitting reaction using concentrated solar energy. Only two or three cyclic redox processes are considered. Particle size effect on redox reactions and economic aspect of hydrogen production via concentrated solar energy are also briefly discussed. Among various metal oxides system CeO2 system is emerging as a promising candidate and researchers have demonstrated workability of this system in the solar cavity-receiver reactor for over 500 cycles. The highest solar thermal process efficiency obtained so far is about 0.4 %, which needs to be increased for real commercial applications. Among traditionally studied oxides, thin-film ferrites looks more promising and could meet US Department of energy target of $2.42/kg H2 by 2025. The cost is mainly driven by high heliostat cost which needs to reduced significantly for economic feasibility. Overall, more work needs to be done in terms of redox material engineering, reactor technology, heliostat cost reduction and gas separation technologies before commercialization of this technology.
Tài liệu tham khảo
Licht, S.: Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis. Int. J. Hydrog. Energy 30(5), 459–470 (2005)
Kogan, A.: Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study. Int. J. Hydrog. Energy 23(2), 89 (1998)
Lede, J., Villermaux, J., Ouzane, R., Hossain, M.A., Ouahes, R.: Production of hydrogen by simple impingement of a turbulent jet of steam upon a high temperature zirconia surface. Int. J. Hydrog. Energy 12(1), 3–11 (1987)
Bilgen, E., Ducarroir, M., Foex, M., Sibieude, F., Trombe, F.: Use of solar energy for direct and two-step water decomposition cycles. Int. J. Hydrog. Energy 2(3), 251–257 (1977)
Nakamura, T.: Hydrogen production from water utilizing solar heat at high temperatures. Sol. Energy 19(5), 467 (1977)
Lundberg, M.: Model calculations on some feasible two-step water splitting processes. Int. J. Hydrog. Energy 18(5), 369 (1993)
Palumbo, R., Léde, J., Boutin, O., Elorza Ricart, E., Steinfeld, A., Möller, S., Weidenkaff, A., Fletcher, E.A., Bielicki, J.: The production of Zn from ZnO in a high-temperature solar decomposition quench process—I. The scientific framework for the process. Chem Eng Sci 53(14), 2503–2517 (1998)
Palumbo, R.: Solar thermal chemical processing: Challenges and changes. J Phys IV Fr 9, Pr3-35–Pr33-40 (1999)
Weidenkaff, A., Brack, M., Möller, S., Palumbo, R., Steinfeld, A.: Solar thermal production of zinc: Program strategy and status of research. J Phys IV Fr 9, Pr3-313–Pr3-318 (1999)
Sibieude, F., Ducarroir, M., Tofighi, A., Ambriz, J.: High temperature experiments with a solar furnace: The decomposition of Fe3O4, Mn3O4, CdO. Int. J. Hydrog. Energy 7(1), 79–88 (1982)
Ehrensberger, K., Frei, A., Kuhn, P., Oswald, H.R., Hug, P.: Comparative experimental investigations of the water-splitting reaction with iron oxide Fe1−yO and iron manganese oxides (Fe1−xMn x )1−yO. Solid State Ionics 78, 151–160 (1995)
Ehrensberger, K., Kuhn, P., Shklover, V., Oswald, H.R.: Temporary phase segregation processes during the oxidation of (Fe0.7Mn0.3)0.99O in N2 + H2O atmosphere. Solid State Ionics 90, 75–81 (1996)
Tamaura, Y., Steinfeld, A., Kuhn, P., Ehrensberger, K.: Production of solar hydrogen by a novel, 2-step, water-splitting thermochemical cycle. Energy 20(4), 325 (1995)
Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., Tamaura, Y.: Solar-processed metals as clean energy carriers and water-splitters. Int. J. Hydrog. Energy 23(9), 767–774 (1998)
Abanades, S., Charvin, P., Lemont, F., Flamant, G.: Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. Int. J. Hydrog. Energy 33(21), 6021 (2008)
Kaneko, H., Kodama, T., Gokon, N., Tamaura, Y., Lovegrove, K., Luzzi, A.: Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation. Sol. Energy 76, 317 (2004)
Kodama, T., Nakamuro, Y., Mizuno, T.J.: A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J. Sol. Energy Eng. 128, 3 (2006)
Kodama, T.: High-temperature solar chemistry for converting solar heat to chemical fuels. Prog. Energy Combust. Sci. 29(6), 567 (2003)
Abanades, S., Flamant, G.: Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides. Sol. Energy 80(12), 1611 (2006)
Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., Steinfeld, A.: High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330(6012), 1797–1801 (2010)
Lapp, J., Davidson, J.H., Lipinski, W.: Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery. Energy 37, 591–600 (2012)
Kaneko, H., Taku, S., Tamaura, Y.: Reduction reactivity of CeO2–ZrO2 oxide under high O2 partial pressure in two-step water splitting process Sol. Energy 85(9), 2321–2330 (2011)
Kang, K.-S., Kim, C.-H., Park, C.-S., Kim, J.-W.: Hydrogen reduction and subsequent water splitting of Zr-added CeO2. J. Ind. Eng. Chem. 13(4), 657–663 (2007)
SP Gal, A., Abanades, A.: Dopant incorporation in Ceria for enhanced water-splitting activity during solar thermochemical hydrogen generation. J. Phys. Chem. C 116, 13516–13523 (2012)
Palumbo, R., Rouanet, A., Pichelin, G.: The solar thermal decomposition of TiO2 at temperatures above 2200 K and its use in the production of Zn from ZnO. Energy 20(9), 857–868 (1995)
Abanades, S., Charvin, P., Flamant, G., Neveu, P.: Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy 31(14), 2805–2822 (2006)
Cho, Y.S., Kim, J.H.: Hydrogen production by splitting water on solid acid materials by thermal dissociation. Int. J. Hydrog. Energy 36(14), 8192–8202 (2011)
Bilgen, E., Bilgen, C., Beghi, GE., Ducarroir, M.: Thermochemical hydrogen producing processes. Contract file No. 08SX.31155-8-6602. Prepared by Exergy Research Corporation, prepared for NRC of Canada, Montreal Road, Ottawa, KlA OR6, J.J. Murray (1979)
Tamaura, Y., Ueda, Y., Matsunami, J., Hasegawa, N., Nezuka, M., Sano, T., Tsuji, M.: Solar hydrogen production by using ferrites sol. Energy 65(1), 55–57 (1999)
Loutzenhiser, P., Meier, A., Steinfeld, A.: Review of the two-Step H2O/CO2-splitting solar thermochemical cycle based on Zn/ZnO redox reactions. Materials 3, 4922–4938 (2010)
Hed, A.Z., Tannhauser, D.S.: Contribution to the Mn-O phase diagram at high temperature. J. Electrochem. Soc. 4, 314–318 (1967)
Rager, T.: Re-evaluation of the efficiency of a ceria-based thermochemical cycle for solar fuel generation. Chem. Commun. 48, 10520–10522 (2012)
Inoue, M., Asegawa, N., Uehara, R., Gokon, N., Kaneko, H., Tamaura, Y.: Solar hydrogen generation with H2O/ZnO/MnFe2O4 system. Sol. Energy 76(1–3), 309–315 (2004)
Roeb, M., Sattle, C., Klüser, R., Monnerie, N., Oliveira, L.D., Al, E.: Solar hydrogen production by a two-step cycle based on mixed iron oxides. J. Sol. Energy Eng. Trans. ASME 128(2), 125–133 (2006)
Kodama, T., Nakamuro, Y., Mizuno, T.: A two-step thermochemical water splitting by iron-oxide on stabilized zirconia. J. Sol. Energy Eng. Trans. ASME 128(1), 3–7 (2006)
Gokon, N., Mizuno, T., Nakamuro, Y., Tamaura, K., Kodama, T.: Iron-containing yttria-stabilized zirconia system for two-step thermochemical water splitting. J. Sol. Energy Eng. Trans. ASME 130(1), 011018 (2008)
Perkins, C., Weimer, A.W.: Likely near-term solar-thermal water splitting technologies. Int. J. Hydrog. Energy 29(15), 1587–1599 (2004)
Steinfeld, A.: Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. Int. J. Hydrog. Energy 27(6), 611 (2002)
Lédé, J., Elorza-Ricart, E., Ferrer, M.: Solar thermal splitting of zinc oxide: A review of some of the rate controlling factors. J. Sol. Energy Eng. Trans. ASME 123(2), 91–97 (2001)
Haueter, P., Moeller, S., Palumbo, R., Steinfeld, A.: The production of zinc by thermal dissociation of zinc oxide—Solar chemical reactor design. Sol. Energy 67(1–3), 161–167 (1999)
Perkins, C., Lichty, P.R., Weimer, A.W.: Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle. Int. J. Hydrog. Energy 33(2), 499–510 (2008)
Souriau, D.: Procédé et dispositif pour l’utilisation d’énergie thermique à haute température, en particulier d’origine nucléaire. Device and method for the use of high temperature heat energy, in particular of nuclear origin. France Patent FR2135421
Gupta, P., Velazquez-Vargas, L.G., Fan, L.S.: Syngas redox (SGR) process to produce hydrogen from coal derived syngas. Energy Fuels 21(5), 2900–2908 (2007)
Perry, R.H., Green, D.: Perry’s Chemical Engineers Handbook, 6th edn. McGraw-Hill, New York (1984)
Yuan-shi, L., Yan, N., Guang-yan, F., Wei-tao, W., Gesmundo, F.: Effect of grain size reduction on high temperature oxidation of binary two-phase alloys. Trans. Nonferrous Met. Soc. China 11(5), 644–648 (2001)
Zhong-qiu, C., Yan, N., Li-Jie, C., Wei-tao, W.: Effect of grain size reduction on high temperature oxidation of behaviour of Cu-80Ni alloy. Trans. Nonferrous Met. Soc. China 13(4), 908–911 (2003)
Syed-Hassan, S.S.A., Li, C.-Z.: Effects of crystallite size on the kinetics and mechanism of NiO reduction with H2. Int. J. Chem. Kinet. 43(12), 667–676 (2011)
Mrowec, S.: Defects and Diffusion in Solids: An Introduction. Elsevier, Amsterdam (1980)