Thermobarometry of phengite‐bearing eclogites in the Dabie Mountains of central China

Journal of Metamorphic Geology - Tập 15 Số 2 - Trang 239-252 - 1997
D. A. Carswell1, Patrick J. O’Brien1, Robert N. Wilson1, M. Zhai1
1University of Sheffield, Sheffield, United Kingdom

Tóm tắt

Pressure–temperature conditions for formation of the peak metamorphic mineral assemblages in phengite‐bearing eclogites from Dabieshan have been assessed through a consideration of Fe2+–Mg2+ partitioning between garnet–omphacite and garnet–phengite pairs and of the reaction equilibrium celadonite+pyrope+grossular=muscovite+diopside, which incorporates an evaluation of the extent of the strongly pressure‐dependent inverse Tschermak's molecule substitution in the phengites. For the latter equilibrium, the calibration and recommended activity–composition models indicated by Waters & Martin (1993) have been employed and importantly yield results consistent with petrographic evidence for the stability at peak conditions of coesite in certain samples and quartz in others.

Confirmation that in some phengite‐eclogite samples peak silicate mineral assemblages have equilibrated at confining pressures sufficient for the stability of coesite (and in some cases even diamond) rather negates previous suggestions that coesite may have been stabilized in only very localized, possibly just intracrystalline, domains. Inherent difficulties in the evaluation of peak metamorphic temperatures from Fe2+–Mg2+ partitioning between mineral phases, due to uncertainties over Fe3+/Fe2+ ratios in the minerals (especially omphacites), and to re‐equilibration during extensive retrograde overprinting in some samples, are also assessed and discussed.

Our results indicate the existence in south‐central Dabieshan of phengite eclogites with markedly different equilibration conditions within two structurally distinct tectonometamorphic terranes. Thus our data do not support earlier contentions that south‐central Dabieshan comprises a structurally coherent continental‐crust terrane with a regional P–T  gradient signalling previous deepest‐level subduction in the north. Instead, we recognize the Central Dabie ultra‐high‐pressure (coesite eclogite‐bearing) terrane to be structurally overlain by a Southern Dabie high‐pressure (quartz eclogite‐bearing) terrane at a major southerly dipping shear zone along which late orogenic extensional collapse appears to have eliminated at least 20 km of crustal section.

Từ khóa


Tài liệu tham khảo

Berman R. G., 1990, Mixing properties of Ca–Mg–Fe–Mn garnets., American Mineralogist, 75, 328

CarswellD. A.1990;Eclogite Facies Rocks. Blackie Glasgow

CarswellD. A.&HarleyS. L.1990;Mineral barometry and thermometry. In:Eclogite Facies Rocks. (ed. Carswell D. A.) pp. 83–110Blackie Glasgow

Carswell D. A., 1993, Areal extent of the ultra‐high pressure metamorphism of eclogites and gneisses in Dabieshan, central China. Abstract, 4th International Eclogite Conference, Cosenza,, Terra Abstracts, 5

Cawthorn R. G., 1974, The recalculation of pyroxene end‐member parameters and the estimation of ferrous and ferric iron content from electron microprobe analyses., American Mineralogist, 59, 1203

10.1007/BF00381838

10.1127/ejm/3/2/0263

ColemanR. G.&WangX.1995;Overview of the geology and tectonics of UHPM. In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 1–32 Cambridge University Press New York

10.1127/ejm/7/1/0119

10.1016/0040-1951(94)90247-X

10.1130/0091-7613(1995)023<0597:MIHGMR>2.3.CO;2

Dobrzhinetskaya L., 1993, The structural distribution of crustal microdiamonds within eclogite‐gneiss formation (northern Kazakhstan). Abstract, 4th International Eclogite Conference, Cosenza,, Terra Abstracts, 5

10.1180/minmag.1987.051.361.10

10.1007/BF00371878

10.1016/0024-4937(82)90017-2

10.1029/94JB02421

Holland T. J. B., 1980, The reaction albite–jadeite+quartz determined experimentally in the range 600–1200 °C., American Mineralogist, 65, 129

10.1007/BF00286831

10.1111/j.1525-1314.1990.tb00458.x

10.1111/j.1525-1314.1991.tb00502.x

10.1016/0024-4937(80)90054-7

10.1016/0024-4937(82)90021-4

10.1007/BF00399364

KroghE. J.&CarswellD. A.1995;High and ultrahigh pressure eclogites and garnet peridotites in the Scandinavian Caledonides. In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 244–298Cambridge University Press New York

10.1007/BF00375235

NewtonR. C.&HaseltonH. T.1981;Thermodynamics of the garnet–plagioclase–Al2SiO5‐quartz geobarometer. In:Thermodynamics of Minerals and Melts(eds Newton R. C. Navrotsky A. & Wood B. J.) pp. 131–147Springer Verlag New York

10.1127/ejm/5/4/0659

10.1029/93TC01544

10.1127/ejm/1/4/0595

10.1111/j.1525-1314.1985.tb00324.x

10.1127/ejm/3/1/0007

10.1127/ejm/3/2/0231

Schreyer W., 1985, Metamorphism of crustal rocks at mantle depths: high‐pressure minerals and mineral assemblages in metapelites., Fortschrifte Mineralogie, 63, 227

10.1029/94JB02912

ShatskyV. S.SobolevN. V.&VavilovM. A.1995;Diamond‐bearing metamorphic rocks of the Kokchetav massif (Northern Kazakhstan). In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 427–455 Cambridge University Press New York

10.1038/310641a0

Smith D. C., 1985, The coesite‐eclogite‐facies: from microtextures to megatectonics., Terra Cognita, 5, 418

SmithD. C.1995;Microcoesites and microdiamonds in Norway: an overview. In:Ultrahigh Pressure Metamorphism(eds Coleman R. G. & Wang X.) pp. 299–355 Cambridge University Press New York

10.1111/j.1365-3121.1989.tb00325.x

10.1038/343742a0

Sobolev N. V., 1995, Kokchetav Massif in northern Kazakhstan – the type locality of diamondiferous metamorphic rocks., Bochumer Geologische und Geotechnische Arbeiten, 44

10.1130/0091-7613(1991)019<0933:RUPCBE>2.3.CO;2

10.1130/0091-7613(1989)017<1085:CBEFTD>2.3.CO;2

10.1086/629585

Waters D. J., 1993, Geobarometry of phengite‐bearing eclogites., Terra Abstracts, 5, 410

Wirth R., 1995, Coesite/quartz transformation: microstructures in nature and experiment., Bochumer Geologische und Geotechnische Arbeiten, 44, 260

10.1126/science.256.5053.80