Tính năng bảo vệ nhiệt của các composite polymer với nano-titanium dioxide

Sylwester Stawarz1, Natalia Witek1, Wojciech Kucharczyk1, Mohamed Bakar2, Magdalena Stawarz1
1Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, Radom, Poland
2Faculty of Materials Science, Technology and Design, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland

Tóm tắt

Công trình hiện tại nghiên cứu về các tính chất ablative và nhiệt của một loại nhựa epoxy đã được sửa đổi bằng các hạt nano titanium dioxide có kích thước khác nhau. Các mẫu đã chuẩn bị được đưa ra nhiệt độ trên 1900 °C và được kiểm tra về tính năng bảo vệ nhiệt và tính năng ablative. Ảnh hưởng của các thành phần composite epoxy đến tính năng bảo vệ nhiệt và tính năng ablative: nhiệt độ tối đa ở mặt sau, và lượng mất mát trung bình dưới điều kiện dòng nhiệt cường độ cao cũng như phân bố nhiệt độ trên bề mặt ablation của mẫu bằng cách sử dụng camera nhiệt và pyrometer đã được thiết lập. Một phân tích thống kê của các kết quả thử nghiệm đã được thực hiện. Kết quả xác nhận rằng nhựa epoxy liên kết chéo với chất đóng rắn polyaminoamide và được sửa đổi bằng TiO2(21 nm) và TiO2(100 nm+1% Mn) cho thấy tính năng bảo vệ nhiệt tốt hơn so với ma trận epoxy không được sửa đổi.

Từ khóa


Tài liệu tham khảo

Al-Ajaj, I.A., Abd, M.M., Jaffer, H.I.: Mechanical properties of micro and nano TiO2/epoxy composites. IJMMME, 1 (2013), ISSN 2320-4060 Anselme, P.: Titanium dioxide. Titanium Dioxide Manufacturers Association (2013). http://www.cristal.com Bahramian, A.R., Kokabi, M.: Ablation mechanism of polymer layered silicate nanocomposite heat shield. J. Hazard. Mater. 166, 445–454 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.061 Bahramian, A.R.: Effect of external heat flux on the thermal diffusivity and ablation performance of carbon fiber reinforced novolac resin composite. Iran. Polym. J. 22, 579–589 (2013). https://doi.org/10.1007/s13726-013-0157-z Bakar, M., Kostrzewa, M., Białkowska, A., Pawelec, Z.: Effect of mixing parameters on the mechanical and thermal properties of nanoclay modified epoxy resin. High Perform. Polym. 26, 299–306 (2014) Bakar, M., Kucharczyk, W., Stawarz, S.: Investigation of thermal and ablative properties of modified epoxy resins. Polym. Polym. Compos. 24, 617–623 (2016) Bakar, M., Szymańska, J., Rudecka, J., Fitas, J.: Effect of reactive diluents and kaolin on the mechanical properties of epoxy resin. Polym. Polym. Compos. 18, 503–510 (2010) Bowers, J.: Nano titanium dioxide (2012). http://www.eoearth.org/view/article/154762 Chang, L., Zhang, Z., Breidt, C., Friedrich, K.: Tribological properties of epoxy nanocomposites. I. Enhancement of the wear resistance by nano-TiO2 particle. Wear 258, 141 (2005) Chatterjee, A., Islam, M.S.: Fabrication and characterization of TiO2—epoxy nanocomposite. Mater. Sci. Eng, A 487, 574–585 (2008) Chen, X.B., Mao, S.S.: Titanium dioxide nanomaterials: synthesis properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007) Ciech-Sarzyna Co.: Informative papers of products Nowa Sarzyna ( in Polish ) (2014). http://ciechgroup.com/produkty/ Czub, P., Bończa-Tomaszewski, Z., Penczek, P., Pielichowski, J.: The chemistry and the technology of epoxy resins (in Polish). Scientifically-Technical Publishing House WNT, Warszawa (2002) Dimitrienko, YuI: Thermomechanical behaviour of composite materials and structures under high temperature: 1. Mater. Compos. A 28a, 453–461 (1997). https://doi.org/10.1016/S1359-835X(96)00144-3 Fujishima, A., Zhang, X.: Titanium dioxide photocatalysis: present situation and future approaches. C R Chimie 9, 750–760 (2006) Haack, A.: Latest achievements and perspectives in tunnel safety. Tunn. Undergr. Space Technol. 19, 305 (2004). https://doi.org/10.1016/j.tust.2004.01.007 Hassanzadeh-Aghdam, M.K., Ansari, R.: Thermomechanical investigation of unidirectional carbon fiber-polymer hybrid composites containing CNTs. Int. J. Mech. Mater. 14, 1–18 (2018) Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C., Sprenger, S.: The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles. Polymer 51, 6284–6294 (2010) Hu, Y., Tsai, H.L., Huang, C.L.: Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J. Eur. Ceram. Soc. 23, 691–696 (2003) Jackowski, A.: Ablation flat wall erosion under floating layer ablation (in Polish). Biuletyn WAT 460, 23–33 (1986) Kucharczyk, W.: Ablative and abrasive wear of phenolic–formaldehyde glass laminates with powder fillers. Eksploatacja i Niezawodnosc 14, 11–17 (2012) Kucharczyk, W.: Some ablative properties of epoxy composites used for thermoprotection (in Polish). Przemysł Chemiczny 89, 1673–1676 (2010) Kucharczyk, W., Dusiński, D., Żurowski, W., Gumiński, R.: Effect of composition on ablative properties of epoxy composites modified with expanded perlite. Compos. Struct. 183, 654–662 (2018). https://doi.org/10.1016/j.compstruct.2017.08.047 Kucharczyk, W., Przybyłek, P., Opara, T.A.: Investigation of the thermal protection ablative properties of thermosetting composites with powder fillers: the corundum Al2O3 and the carbon powder C. Pol. J. Chem. Technol. 15, 49–53 (2013). https://doi.org/10.2478/pjct-2013-0067 Kucharczyk, W.: Investigation of the thermal protection ablative properties of polymer composites with powder fillers (in Polish). Unpublished doctoral dissertation. Technical University of Radom, Radom (2007) Leszek, W.: Empirical research. Some methodological issues [in Polish], 1st edn. Institute for Sustainable Technologies in Radom, Radom (1997) Li, H., Wang, D., Chen, H., Liu, B., Gao, L.: The shielding effect of nano TiO2 on collagen under UV radiation. Macromol. Biosci. 3, 351–353 (2003) Lin, W.S.: Steady ablation on the surface of a two-layer composite. Int. J. Heat Mass Transf. 48, 5504–5519 (2005) Lombardi, M., Fino, P., Malucelli, G., Montanaro, L.: Exploring composites based on PPO blend as ablative thermal protection systems—Part I: the role of layered fillers. Compos. Struct. 94, 1067–1074 (2012). https://doi.org/10.1016/j.compstruct.2011.10.019 Merad, L., Benyoucef, B., Abadie, M.J.A., Charles, J.P.: Characterization and mechanical properties of epoxy resin reinforced with TiO2 nanoparticles. J. Eng. Appl. Sci. 6, 205–209 (2011) Montgomery, D.C.: Design and analysis of experiments. Wiley, New York (2009) NIST NCSTAR 1: Federal building and fire safety investigation of the world trade center disaster: final report on the collapse of the World Trade Center. U.S. Government Printing Office, Washington, September 2005. Retrieved Jun 12, 2006, from http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909236 Ono, K., Otsuka, T.: Fire design requirement for various tunnels. In: 32nd ITA—World Tunnel Congress, Seoul, April 25th 2006. Retrieved Jun 23, 2006, from www.ita2006.com Patton, R.D., JrCU, Pittman, Wang, L., Hill, J.R., Day, A.: Ablation, mechanical and thermal conductivity properties of vapour grown carbon fiber-phenolic matrix composites. Compos. A 33, 243–251 (2002). https://doi.org/10.1016/S1359-835X(01)00092-6 Rajabi, L., Mohammadi, Z., Derakhshan, A.A.: Thermal stability and dynamic mechanical properties of nano and micron-TiO2 particles reinforced epoxy composites: effect of mixing method. Iran. J. Chem. Eng. 10, p (2013) Rao, P.S., Mohana, KChK, Vijay, S.B.M., Govinda, R.P., Surya, P.A.: Synthesis of nano titanium dioxide powder using MWP (microwave plasma) and its characterization. IJMER 2, 1150–1156 (2012) Sigma-Aldrich Co.: Informative papers of products. Titanium (IV) oxide (2014). http://www.sigmaaldrich.com Song, G.M., Zhou, Y., Wang, Y.J.: Effect of carbide particles on the ablation properties of tungsten composites. Mater. Charact. 50, 293–303 (2003a). https://doi.org/10.1016/S1044-5803(03)00123-2 Song, G.M., Zhou, Y., Wang, Y.J.: Thermomechanical properties of TiC particle reinforced tungsten composites for high temperature applications. Int. J. Refract. Metals Hard Mater. 21, 1–12 (2003b) Szymańska, J., Bakar, M., Białkowska, A., Kostrzewa, M.: Study on the adhesive properties of reactive liquid rubber toughened epoxy-clay hybrid nanocomposites. J. Polym. Eng., Published online 09-11-2017. https://doi.org/10.1515/polyeng-2017-0099 Wetzel, B., Rosso, P., Haupert, F., Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanism. Eng. Fract. Mech. 73, 2375 (2006) Wilkinson, T.: The World Trade Center and 9/11: the discussion of some engineering design issues. National Conference “Safe Buildings for This Century”. Australian Institute of Building Surveyors, Sydney (2002) Willam, K., Rhee, I., Shing, B.: Interface damage model for thermomechanical degradation of heterogeneous materials. Comput. Methods Appl. Mech. Eng. 193, 3327–3350 (2004). https://doi.org/10.1016/j.cma.2003.09.020 Yu, F.-Er.: Study on the ablation materials of modified polyurethane/polysiloxane. Unpublished doctoral dissertation. National Sun Yat-sen University, Materials Science and Engineering Department, Guangzhou (2004)