Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V – PART 1: Material characterisation

Eva-Lis Odenberger1, J. Hertzman1, Per Thilderkvist1, Marion Merklein2, Andreas Kuppert2, Thomas Stöhr2, J. Lechler2, Mats Oldenburg3
1Forming Group, OSAS, Industrial Development Centre in Olofström AB, Olofström, Sweden
2Manufacturing Technology, University of Erlangen-Nuremberg, Erlangen, Germany
3Division of Solid Mechanics, Luleå University of Technology, Luleå, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cook RD, Malkaus DS, Plesha ME (1989) Concepts and applications of finite element analysis, 3rd edn. John Wiely & Sons, New York, ISBN 0-471-50319

Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elemens for continua and structures, 3rd edn. John Wiely & Sons, New York, ISBN 0-471-98774-3

Adams V, Askeazi A (1999) “Building better products with finite element analysis”. On Word Press, Santa Fee, ISBN 1-56690-160X

Tekkaya AE (2000) State of the art of simulation of sheet metal forming. J Mater Process Technol 103:14–22

Bathe KJ (2004) “On the state of finite element procedures for forming processes”. In: Gosh S, Castro JC and Lee JK (eds) CP712, Materials processing and design: modeling, simulation and applications, NUMIFORM (2004), pp 34–38. American Institute of Physics

Lewis RW, Morgan K, Thomas HR (1996) Seetharamu KN the finite element method in heat transfer analysis, 3rd edn. John Wiely & Sons, New York, ISBN 0-471-93424-0

Boyer R, Welsch G, Collings EW (1994) Materials properties handbook: titanium alloys, edition, ASM International

Lütjering G, Williams JC (2003) Titanium, Springer-Verlag Berlin Heidelberg

Semiatin SL, Seetharaman V, Weiss I (1998) Mater Sci Eng, A A243:1–24

Ding R, Guo ZX, Wilson A (2002) Mater Sci Eng, A 327:233–245

Follansbee PS, Grey GT III (1989) An analysis of the low temperature, low and high strain. Rate deformation of Ti-6Al-4V. Metall Trans A 20A(5):863–874

Nemat-Nasser S, Guo W-G, Nesterenko VF, Indrakanti SS, Gu Y-B (2001) Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: experiments and modeling. Mech Mater 33(8):425–439, ISSN: 0167–6636

Picu RC, Majorell A (2002) Mechanical behaviour of Ti-6Al-4V at high and moderate temperatures—part II: constitutive modelling. Mater Sci Eng A326:306–316

Lee WS, Lin MT (1997) The effects of strain rate and temperature on the compressive deformation behavior of Ti-6Al-4V alloy. J Mater Proc Tech 71:235–246

Khan AS, Suh YS, Kazmi R (2004) Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. Int J Plast 20:2233–2248

Khan AS, Kazmi R, Farrokh B (2007) Multiaxial and non-proportional loading responses, anisotropy and modelling of Ti-6Al-4V titanium alloy over a wide ranges of strain rates and temperatures. Int J Plast 23:931–950

Ding R, Guo ZX, Qian M (2007) Comput Mater Sci 40:201–212

Wagoner AJ, Bull CW, Kumar KS, Briant CL (2003) Metall Mater Trans A 34(2):295–306

Lee W-S, Lin M-T (1997) J Mater Process Technol 71(2):235–246

Semiatin SL, Bieler TR (2001) Metall Mater Trans A 32(7):1787–1799

Babu B (2008) Licentiate thesis 2008:40. Luleå University of Technology, Sweden

Hill R (1950) The matematicall, theory of plasticity. Clarendon, Oxford

Barlat F, Lian J (1989) Plasticity behaviour and strechability of sheet metals part I: a yield function for orthotropic sheets under plane stress condition. Int J Plast 5:51–66

Hosford W (1979) On the yield loci of anisotropic cubic metals. 7th North american metalworking conf. SME, Dearborn, pp 191–197

Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Shu E (2003) Plane stress yield function for aluminium alloy sheet—Part1: theory. Int J Plast 19:1297–1319

Cazacu O, Barlat F (2006) Orthotropic yield criterion for hexagonal closed packed metals. Int J Plast 22:1171–1194

Odenberger E-L, Schill M and Oldenburg M (2012) Thermo-mechanical sheet metal forming of aero engine components in Ti-6Al-4V – PART 2: Constitutive modelling and validation, Int. Journal of Material Forming. doi: 10.1007/s12289-012-1094-7

Manual for The Resultant Frequency and Damping Analyser (RFDA) system 23, version 6.3.0, IMCE (2006).

RFDA: http://www.imce.net/ , Feb (2011).

ARAMIS v6: http://www.gom.com , Feb (2011).

Merklein M, Lechler J, Geiger M (2006), Characterization of the flow properties of the quenchenable ultra high strength steel 22MnB5. Annals of the CIRP 55/1, pp 229

Merklein M, Lechler J (2006), Investigation of the thermo-mechanical properties of hot stamping steels. In: Metal Forming Conference 2006, Birmingham, pp 452

Hoffmann H, Vogl C, Determination of true stress–strain-curves and normal anisotropy in tensile test with optical deformation measurement. Annals of CIRP 52/1/2003, pp 217

Hecht J, Pinato S, Geiger M (2005), Determination of mechanical properties for hydroforming of magnesium sheets at elevated temperatures. In: SheMet’05, Germany, pp 763

Eggertsen P-A, Mattiasson K (2010) Uniaxial tension/compression tests and cyclic bending tests for hardening parametsr identification, IDDRG 2010 50th Anniversary Conference, Graz, Austria, pp 565–574

Boger RK, Wagoner RH, Barlat F, Lee MG, Chung K (2005) Continuous, large strain, tension/compression testing of sheet material. Int J Plast 21:2319–2343

Eggertsen P-A (2009) Licentiate thesis, 2009:05. Chalmers University of Technology, Sweden

Sigvant M, Mattiasson K, Vegter H, Thilderkvist P. A viscous pressure bulge test for the determination of a plastic hardening curve and equibiaxial material data. Int. J. Mater. Form. 2(4):235–242.

Nakazima K, Kikuma T, Hasuka K (1968) Yamata Tecnical Report 264:141–154

Keeler S P (1965) Determination of forming limit in automotive stamping, Soc. Of. Automotive Engineering, Nr 650 535, pp 1–9,

Hora P et al (1996) A prediction method for ductile sheet metal failure using FE-simulation. NUMISHEET, Dearborn, pp 252–256

Tong L, Hora P, Reisser J (2002) Prediction of forming limit with nonlinear deformation paths using modified maximum force criterion, NUMISHEET 2002

Draft International Standard, ISO/DIN 12004–2, Metallic materials-sheet and strip-determination of forming limit curves–Part 2: determination of forming limit curves in laboratory.

Pellegrini D, Lechler J, Ghiotti A, Bruschi S, Merklein M (2009) Interlaboratory comparison of forming limit curves for hot stamping of high strength steels. Key Eng Mater 410–411:297–304

VDI-Wärmeatlas (2002) Springer Verlang, ISBN: 3-540-41200.

Geiger M, Merklein M, Hoff C (2005) Basic Investigations on the hot stamping steel 22MnB5. In: Proc. of SheMet’05, Erlangen, Germany, pp 795–802.

Sigvant M, Mattiasson K, Larsson M (2008) The definition of incipient necking and its impact on experimentally or theoretically determined forming limit curves, IDDRG 2008 conference. Olofström, Sweden, pp 207–218

Cleveland RM, Ghosh AK (2002) Inelastic effects on springback in metals. Int J Plast 18:769–785

Eggertsen P-A, Mattiasson K (2010) On constitutive modeling for springback analysis. Int J Mech Sci 52:804–818

Vrh M, Halilovič M, Štok B (2011) The evolution of effective elastic properties of a cold formed stainless steel sheet. Exp Mech 51:677–695