Thermo‐hydro‐mechanical analysis of partially saturated porous materials

Engineering Computations - Tập 13 Số 7 - Trang 113-143 - 1996
Dariusz Gawin1, Bernhard A. Schrefler2, Mayo J. Galindo
1Technical University of Lodz, Lodz, Poland
2Houston Methodist

Tóm tắt

Presents a fully coupled numerical model to simulate the slow transient phenomena involving heat and mass transfer in deforming partially saturated porous materials. Makes use of the modified effective stress concept together with the capillary pressure relationship. Examines phase changes (evaporation‐condensation(, heat transfer through conduction and convection, as well as latent heat transfer. The governing equations in terms of gas pressure, capillary pressure, temperature and displacements are coupled non‐linear differential equations and are discretized by the finite element method in space and by finite differences in the time domain. The model is further validated with respect to a documented experiment on partially saturated soil behaviour, and the effects of two‐phase flow, as compared to the one‐phase flow solution, are analysed. Two other examples involving drying of a concrete wall and thermoelastic consolidation of partially saturated clay demonstrate the importance of proper physical modelling and of appropriate choice of the boundary conditions.

Từ khóa


Tài liệu tham khảo

Lewis R.W., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media

10.1098/rspa.1990.0062

Coussy O., 1991, Editions Technip

de Boer R., 1991, Heft 54

10.1108/EUM0000000004077

10.1029/TR038i002p00222

10.1029/TR039i005p00909

10.1016/0017-9310(75)90002-2

10.1016/S0065-2717(08)70223-5

Whitaker S., 1980, Advances in Drying, 1

10.1029/WR017i003p00714

10.1002/nag.1610090606

10.1061/(ASCE)0733-9399(1991)117:11(2475)

Baggio P., 1993, La Termotecnica, 45, 53

Gawin D., 1994, Archives of Civil Engineering, 40, 89

10.1007/978-3-642-61879-6

10.1002/fld.1650200817

10.1016/0309-1708(79)90025-3

10.1016/0309-1708(79)90035-6

10.1016/0309-1708(80)90016-0

Bear J., 1979, Hydraulics of Groundwater

Bear J., 1988, Dynamics of Fluids in Porous Media

10.1007/BF00238181

10.1007/BF00238182

10.1007/978-94-009-1926-6

10.1029/91WR01260

Handbook, 1993, ASHRAE

Biot M.A., 1957, Journal of Applied Mechanics, 24, 594, 10.1115/1.4011606

Skempton A.W., 1961, Pore Pressure and Suction in Soil, 4

10.1029/92WR01737

Baggio P., Quaderno di Istituto di Fisica Tecnica dell' Università di Padova, 146

10.1007/978-3-7091-2832-9_2

Moran M.J., 1993, Fundamentals of Engineering Thermodynamics, 2

Zienkiewicz O.C., 1989, The Finite Element Method, 1, 4

Zienkiewicz O.C., 1991, The Finite Element Method, 2, 4

10.1016/0045-7825(93)90184-Y

Marchuk G.I., 1975, Methods of Numerical Analysis

10.1002/fld.1650120705

Brooks R.N., 1966, Journal of Irrigation Drain, Division of the American Society of Civil Engineering, 92, R2

Liakopoulos, A.C. "Transient flow through unsaturated porous media", PhD thesis,University of California, Berkeley, CA, 1965.

10.1029/WR014i006p01017

Schrefler B.A., 1988, Numerical Methods in Geomechanics, 205

Lassabatere T., 1993, Actes du XI congrès francais de mécanique, Lille-Villeneuve d'Ascq, 3, 273

Lassabatere T., 1993, Proceedings of First Forum of Young European Researchers, 97

Lassabatere T., 1994, Les Actes des Jounées des Sciences de l'ingénieur, Presqu'ile de Giens

10.1016/0309-1708(79)90003-4

10.1016/0017-9310(88)90084-1

Lambe T.W., 1969, Soil Mechanics