Thermo-hydraulics of the Peruvian accretionarycomplex at 12°S

Journal of Geodynamics - Tập 27 - Trang 373-402 - 1999
Nina Kukowski1, Ingo Pecher2
1GEOMAR Research Center for Marine Geosciences, Wischhofstr. 1-3, D-24148 Kiel, Germany
2Woods Hole Oceanographic Institution, U.S. Geological Survey,Woods Hole, MA 02543, USA

Tài liệu tham khảo

Athy, L.F., 1930. Density, porosity and compaction of sedimentary rocks. AAPG Bull. 14, 1–35. Baldwin, B., Butler, C.O., 1985. Compaction curves. Am. Ass. Petrol. Geol. Bull. 69, 622–626. Barr, T.D., Dahlen, F.A., 1989. Brittle frictional mountain building, 2, Thermal structure and heatbudget. J. Geophys. Res. 94, 3923–3947. Bekins, B.A., Dreiss, S.J., 1992. A simplified analysis of parameters controlling dewatering inaccretionary prisms. Earth and Planetary Science Letters 109, 275–287. Bekins, B.A., McCaffrey, A.M., Dreiss, S.J., 1995. Episodic and constant flow models for the originof low-chloride waters in a modern accretionary complex. Water Resources Research 31, 3205–3215. Davis, D.M., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold and thrust belts and accretionarywedges. J. Geophys. Res. 98, 4121–4142. Dickens, G.R., Quinby-Hunt, M.S., 1994. Methane hydrate stability in seawater. Geophys. Res. Lett.21, 2115–2118. Dillon, W.P., Grow, J.A., Paull, C.K., 1980. Unconventional gas hydrate seals may trap gas offsoutheast U. S. Oil Gas J. 78, 124–130. Ferguson, I.J., Westbrook, G.K., Langseth, M.G., Thomas, G.P., 1993. Heat flow and thermalmodels of the Barbados Ridge accretionary complex. J. Geophys. Res. 98, 4121–4142. Germann, D., 1990. Thermische und strukturelle Prozesse in der Überschiebungstektonik. Ph.D. dissertation, TU Clausthal, 219 pp. Gutscher, M.-A., Kukowski, N., Malavieille, J., Lallemand, S.E., 1998. Material transfer inaccretionary wedges from analysis of a systematic series of analog experiments. J. Struct. Geol. 20,407–416. Hartzell, S., Langer, C., 1993. Importance of model parametrization on fifnite fault inversions:application to the 1974 Mw 8.0 Peru earthquake. J. Geophys. Res. 98, 22123–22134. Holbrook, W.S., Hoskins, H., Wood, W.T., Stephen, R.A., Lizzaralde, D., Leg 164 Science Party,1996. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273,1840–1843. Huene, R., Pecher, I.A., Gutscher, M.-A., 1996. Material flux in the Peru subduction zone due to thesubduction of Nazca Ridge and development of the accretionary prism. Tectonics 15, 19–33. Huchon, P., Bourgois, J., 1990. Subduction-induced fragmentation of the Nazca plate off Peru:Mendaña Fracture Zone and Trujillo Trough revisited. J. Geophys.Res. 95, 8419–8436. Hyndman, R.D., Foucher, J .P., Yamano, M., Fisher, A., Scientific Team of Ocean Drilling ProgramLeg 131, 1992. Deep sea bottom-simulating reflectors: calibration of the hydrate stability field as usedfor heat flow estimates. Earth and Planetary Science Letters 109, 289–301. Hyndman, R.D., Wang, K., Yuan, T., Spence, G.D., 1993. Tectonic sediment thickening, fluidexpulsion, and the thermal regime of subduction zone accretionary prisms: the Cascadia margin offVancouver Island. J. Geophys. Res. 98, 21865–21876. Hyndman, R.D., Wang, K., Yamano, M., 1995. Thermal constraints on the seismogenic portion ofthe southwestern Japan subduction thrust. J. Geophys. Res. 100, 15373–15392. Kastner, M., Elderfield, H., Martin, J.B., Suess, E., Kvenvolden, K.A., Garrison, R.E., 1990.Diagenesis and interstitial-water chemistry at the Peruvian continental margin - major constituentsand strontium isotopes. Proc. ODP, Sci. Res. 112, 413–440. Kastner, M., Elderfield, H., Martin, J.B., 1991. Fluids in convergent margins: what do we knowabout their composition, origin, role in diagenesis and importance for oceanic chemical fluxes. Phil.Trans. R. Soc. Lond. 335, 243–259. Kipp, K.L., 1987. A computer code for simulating of heat and solute transport in three-dimensionalground-water flow systems. USGS Water Resources Investigations Report 86, 4095. Kukowski, N., von Huene, R., Lallemand, S.E., Malavieille, J., 1994. Sediment accretion against abuttress beneath the Peruvian continental margin at 12°S as simulated with sandbox modelling. Geol.Rundsch. 83, 822–831. Kvenvolden, K.A., 1993. Gas hydrates-geological perspective and global change. Rev. Geophys. 31,173–187. Kvenvolden, K.A., Kastner, M., 1990. Gas hydrates of the Peruvian outer continental margin. Proc.ODP, Sci. Res. 112, 517–526. Lallemand, S., Schnürle, P., Malavieille, J., 1994. Coulomb theoryapplied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/orfrontal accretion. J. Geophys. Res. 99, 12033–12055. Landolt-Börnstein, 1984. Numerical Data and Functional Relationshipsin Science and Technology.-Group V, Geophysics and Space Research. In: Angenheister, G. (Ed),Physical Properties of rocks, Subvol. a, Vol. 1, Springer, Berlin. Linke, P., Suess, E., Torres, M., Martens, V., Rugh, W.D., Ziebis, W., Kulm, L.D., 1994. In situmeasurements of fluid flow from cold seeps at active continental margins. Deep Sea Research 41,721–739. Mann, D., Kukowski, N., 1998. Numerical modelling of focused fluid flow in the Cascadiaaccretionary wedge. J. Geodyn. 27, 359–372. Marsters, J.C., Christian, H.A., 1990. Hydraulic conductivity of diatomaceous sediment from the Perucontinental margin obtained during ODP Leg 112. In: Suess, E., von Huene, R., et al. (Eds.), OceanDrilling Program, Scientific Results, , Vol. 112. Washington (U.S. Printing Office), pp. 633-639. Moore, J.C., Vrolijk, P., 1992. Fluids in accretionary prisms. Reviews of Geophysics 30, 113–135. Müller, R. D., Roest, W. R., Royer, J.-Y., Gahagan, L. M. and Sclater,J. G., 1995. A digital age map of the ocean floor. SIO Reference Series, 93–30. Neuzil, C.E., 1994. How permeable are clays and shales. Water Resources Research 30, 145–150. Neuzil, C.E., 1995. Abnormal pressures as hydrodynamic phenomena. Am. J. Sci. 295, 742–786. Peacock, S.M., 1993. Large-scale hydration of the lithosphere above subducting slabs. ChemicalGeology 108, 49–59. Peacock, S.M., 1996. Thermal and petrological structure of subduction zones. In: Bebout, G.E.,Scholl, D.W., Kirby, S.H., Platt, J.P. (Eds.), Subduction-Top to Bottom, Vol. 96. AGU GeophysicalMonograph, pp. 119–133. Pecher, I.A., 1995. Seismic studies of bottom simulating reflectors at the convergent margins offshorePeru and Costa Rica. Ph.D. thesis, U Kiel, 159 pp. Pecher, I.A., Minshull, T.A., Singh, S.C., von Huene, R., 1996. Free gas at a bottom simulatingreflector offshore Peru: results from full waveform inversion. Earth and Planetary Science Letters139, 459–469. Ranalli, G., 1995. Rheology of the Earth, 2nd ed. Allen and Unwin. Ruppel, C., 1997. Anomalously cold temperatures observed at the base of the gas hydrate stabilityzone on the US Atlantic passive margin. Geology 25, 699–702. Sclater, J.G., Jaupart, C., Galson, D., 1980. The heat loss through oceanic and continental crust andthe heat loss of the earth. Reviews of Geophysics and Space Physics 18, 269–311. Screaton, E.J., Wuthrich, D.R., Dreiss, S.J., 1990. Permeabilities, fluid pressures, and flow rates inthe Barbados ridge complex. J. Geophys. Res. 95, 8997–9007. Shi, Y., Wang, C.-Y., von Huene, R., 1990. Modelling pore pressure, central Peru margin. In: Suess,E.,von Huene, R. et al. (Eds.), Ocean Drilling Program, Scientific Results, Vol. 112. Washington(U.S. Printing Office), pp. 517–526. Smith, L., Chapman, D.S., 1983. On the thermal effects of groundwater flow. 1. Regional scalesystems. J. Geophys. Res. 88, 593–608. Suess, E., Carson, B., Ritger, S.D., Moore, J.C., Jones, L.D., Cochrane, G.R., 1985. Biologicalcommunities at vent sites along the subduction zone off Oregon. Biol. Soc. Wash. Bull. 6, 475–484. Suess, E., von Huene, R. et al., 1988. Proceedings of the Ocean Drilling Program, Initial Reports,Texas A and M University, 112, 738 p. Taylor, E., Fisher, A., 1993. Sediment permeability at the Nankai accretionary prism, Site 808. In:Hill, I.A., Taira, A., Firth, J.V. et al. (Eds.), Proc. Ocean Drill. Prog., Sci. Res., Vol. 131, pp.235–246. Tichelaar, B.W., Ruff, L.J., 1993. Depth of seismic coupling along subduction zones. J. Geophys.Res. 98, 2017–2037. Torres, M.E., Bohrmann, G., Suess, E., 1996. Authigenic barites and fluxes of barium associated withfluid seeps in the Peru subduction zone. Earth and Planetary Science Letters 144, 469–481. Turcotte, D.L., Schubert, G., 1973. Frictional heating of the descending lithosphere. J. Geophys. Res.78, 5877–5886. Villinger, H.W., Langseth, M.G., Gröschel-Becker, H., Fisher, A.T.,1994. Estimating in situ thermal conductivity from log data. In: Mottl, M.J., Davis, E.E., Fisher, A.T.,Slack, J.F. (Eds.), Proc. Ocean Drill. Prog., Sci. Res., Vol. 139, pp. 545–552. Voss, C.I., 1990. A finite element simulation model for saturated-unsaturated, fluid density-dependentgroundwater flow with energy transport or chemically reactive single-species solute transport.U.S.G.S. Water Resources Investigations, Version V06902D. Wallmann, K., Linke, P., Suess, E., Bohrmann, G., Sahling, H., Schlüter, M., Dählmann, A., Lammers, S., Greinert, G., von Mirbach, N.,1997. Quantifying fluid flow, solute mixing, and biogeochemical turnover at cold vent of the easternAleutian subduction zone. Geochimica et Cosmochimica Acta 61, 5209–5219. Wang, K., 1994. Kinematic models of dewatering accretionary prisms. J. Geophys. Res. 99,4429–4438. Wang, K., Hyndman, R.D., Davis, E.E., 1993. Thermal effects of sediment thickening and fluidexpulsion in accretionary prisms: model and parameter analysis. J. Geophys. Res. 98, 9975–9984. Whiticar, M.J., Hovland, M., Kastner, M., Sample, J.C., 1995. Organic geochemistry of gases, fluids,and hydrates at the Cascadia accretionary margin. Proc. ODP, Sci. Res. 46, 385–397. Yamano, M., Uyeda, S., 1990. Heat flow studies in the Peru Trench subduction zone. In: Suess, E.et al. (Eds.), Ocean Drilling Program, Scientific Results, Vol. 112. Washington (U.S. Printing Office),pp. 667–682. Yeats, R.S., Hart, S.R. et al., 1976. Init. Rept. DSDP 34, 814pp. Zwart, G., Moore, J.C., Cochrane, G.R., 1996. Variations in temperature gradients identify activefaults in the Oregon accretionary prism. Earth and Planetary Science Letters 139, 485–495.