Thermo-Optical Bistability in a Compact High-Q Cavity at a Wavelength of 1550 nm

Bulletin of the Lebedev Physics Institute - Tập 50 - Trang 385-390 - 2023
G. A. Vishnyakova1, D. S. Kryuchkov1, T. A. Voronova2, K. S. Kudeyarov1, E. O. Chiglintsev1,3, N. O. Zhadnov1, K. Yu. Khabarova1,3, N. N. Kolachevsky1,3
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
3Russian Quantum Center, Skolkovo, Moscow, Russia

Tóm tắt

The bistability effect caused by radiation absorption in mirrors of a compact high-Q cavity at a wavelength of 1550 nm is studied. The effect leads to a hysteresis of the cavity transmission when scanning the radiation frequency in different directions. The dependence of the effect on the cavity supplied power is studied, and the experimental data are compared with simulation results. The effect under study can be used in the development of optical logical devices.

Tài liệu tham khảo

Gibbs, H., Optical Bistability: Controlling Light with Light, Orlando: Academic, 1985. An, K., Sones, B.A., Fang-Yen, C., Dasari, R.R., and Feld, M.S., Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level, Opt. Lett., 1997, vol. 22, pp. 1433–1435. https://doi.org/10.1364/OL.22.001433 Hasegawa, T., Optical bistability induced by Gouy phase shift, J. Opt. Soc. Am. B, 2017, vol. 34, pp. 1319–1326. https://doi.org/10.1364/JOSAB.34.001319 Gu, T., Yu, M., Kwong, D.-L., and Wong, C.W., Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators, Opt. Express, 2014, vol. 22, pp. 18412–18420. https://doi.org/10.1364/OE.22.018412 Yu, Y.F., Zhang, J.B., Bourouina, T., and Liu, A.Q., Optical-force-induced bistability in nanomachined ring resonator systems, Appl. Phys. Lett., 2012, vol. 100, p. 093108. https://doi.org/10.1063/1.3690955 Tian, F., Zhou, G., Du, Y., et al., Optical spring effect in nanoelectromechanical systems, Appl. Phys. Lett., 2014, vol. 105, p. 061115. https://doi.org/10.1063/1.4893379 Yanik, M.F., Fan, S., Soljačić, M., and Joannopoulos, J.D., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry, Opt. Lett., 2003, vol. 28, pp. 2506–2508. https://doi.org/10.1364/OL.28.002506 Nozaki, K., Shinya, A., Matsuo, S., et al., Ultralow-power all-optical RAM based on nanocavities, Nat. Photonics, 2012, vol. 6, pp. 248—252. https://doi.org/10.1038/nphoton.2012.2 Ma, J., Qin, J., Campbell, G.T., et al., Photothermally induced transparency, Sci. Adv., 2020, vol. 6, p. eaax8256. https://doi.org/10.1126/sciadv.aax8256 Del Bino, L., Moroney, N., and Del’Haye, P., Optical memories and switching dynamics of counterpropagating light states in microresonators, Opt. Express, 2021, vol. 29, pp. 2193–2203. https://doi.org/10.1364/OE.417951 Reinecke, R. and Black, E., Thermal Self-Locking in a Fabry—Perot Cavity, LIGO Report, 2005. https://dcc.ligo.org/public/0027/T050272/000/T050272-00.pdf. Vishnyakova, G.A., Kryuchkov, D.S., Zhadnov, N.O., et al., Ultra-stable silicon cavities for fundamental researches and applications, AIP Conf. Proc., 2020, vol. 2241, p. 020037. https://doi.org/10.1063/5.0011496 Kryuchkov, D.S., Kudeyarov, K.S., Vishnyakova, G.A., et al., Compact high-finesse ULE cavities for laser frequency stabilization, Bull. Lebedev Phys. Inst., 2021, vol. 48, no. 10, pp. 295–300. https://doi.org/10.3103/S1068335621100092 Kudeyarov, K.S., Golovizin, A.A., Borisenko, A.S., et al., Comparison of three ultrastable lasers with a femtosecond frequency comb, JETP Lett., 2021, vol. 114, no. 5, pp. 243–249. https://doi.org/10.1134/S0021364021170082 Tereshchenko, E.O., https://github.com/eteresh/optical_cavity_thermal_bistability. Rempe, G., Thompson, R.J., Kimble, H.J., and Lalezari, R., Measurement of ultralow losses in an optical interferometer, Opt. Lett., 1992, vol. 17, pp. 363–365. https://doi.org/10.1364/OL.17.000363 Drever, R.W.P., Hall, J.L., Kowalski, F.V., et al., Laser phase and frequency stabilization using an optical resonator, Appl. Phys. B, 1983, vol. 31, no. 2, pp. 97–105. https://doi.org/10.1007/BF00702605 Swierad, D., Hafner, S., Vogt, S., et al., Ultra-stable clock laser system development towards space applications, Sci. Rep., 2016, vol. 6, no. 1, p. 33973. https://doi.org/10.1038/srep33973