Thermally stable and high electrochemical performance ultra-high molecular weight polyethylene/poly(4-methyl-1-pentene) blend film used as Li-ion battery separator

Applied Materials Today - Tập 24 - Trang 101136 - 2021
Jean Claude Habumugisha1,2, Zubaida Rukhsana Usha1, Rui Yu1, Dafaalla M.D. Babiker1, Caixia Wan1, Xin Chen1,3, Liangbin Li1
1National Synchrotron Radiation Laboratory, Anhui Provincial Engineering Laboratory of Advanced Functional Polymer Film, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China
2Rwanda Polytechnic, Integrated Polytechnic Regional College (IPRC) Gishari, Rwanda
3National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China

Tài liệu tham khảo

Liu, 2020, Safer lithium-ion batteries from the separator aspect: development and future perspectives, Energy Environ. Mater. Yusuf, 2020, Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries, Appl. Mater. Today, 20 Lagadec, 2018, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16, 10.1038/s41560-018-0295-9 Lai, 2014, Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions, J. Power Sources, 248, 789, 10.1016/j.jpowsour.2013.09.128 Song, 2021, From separator to membrane: separators can function more in lithium ion batteries, Electrochem. Commun., 124, 10.1016/j.elecom.2021.106948 Huang, 2020, Functionalized separator for next-generation batteries, Mater. Today, 41, 143, 10.1016/j.mattod.2020.07.015 Luiso, 2020, Lithium-ion battery separators: Recent developments and state of art, Curr. Opin. Electrochem., 20, 99, 10.1016/j.coelec.2020.05.011 Waqas, 2019, A robust bi-layer separator with Lewis acid-base interaction for high-rate capacity lithium-ion batteries, Compos. Part B Eng., 177, 10.1016/j.compositesb.2019.107448 Deimede, 2015, Separators for lithium-ion batteries: a review on the production processes and recent developments, Energy Technol., 3, 453, 10.1002/ente.201402215 Zheng, 2020, Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage, Adv. Funct. Mater., 30, 10.1002/adfm.201907006 Heidari, 2020, Recent development of polyolefin-based microporous separators for Li-ion batteries: a review, Chem. Rec., 20, 570, 10.1002/tcr.201900054 Costa, 2020, Polymers for advanced lithium-ion batteries: state of the art and future needs on polymers for the different battery components, Prog. Energy Combust. Sci., 79, 10.1016/j.pecs.2020.100846 Zhu, 2017, Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes, Compos. Part B Eng., 112, 31, 10.1016/j.compositesb.2016.12.025 Waqas, 2019, Recent development in separators for high-temperature lithium-ion batteries, Small, 15, 10.1002/smll.201901689 Byun, 2020, Toward understanding the real mechanical robustness of composite electrode impregnated with a liquid electrolyte, Appl. Mater. Today, 21 Xiang, 2016, Advanced separators for lithium-ion and lithium-sulfur batteries: a review of recent progress, ChemSusChem, 9, 3023, 10.1002/cssc.201600943 Li, 2018, Polypropylene/polyethylene multilayer separators with enhanced thermal stability for lithium-ion battery via multilayer coextrusion, Electrochim. Acta, 264, 140, 10.1016/j.electacta.2018.01.114 Li, 2018, Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation, J. Power Sources, 384, 408, 10.1016/j.jpowsour.2018.02.086 Luo, 2018, Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries, ACS Appl. Energy Mater., 1, 921, 10.1021/acsaem.7b00091 Zainab, 2016, Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries, Mater. Chem. Phys., 182, 308, 10.1016/j.matchemphys.2016.07.037 Liao, 2016, Preparation of hydrophilic polyethylene/methylcellulose blend microporous membranes for separator of lithium-ion batteries, J. Membr. Sci., 498, 147, 10.1016/j.memsci.2015.09.064 Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u Lee, 2016, In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries, J. Power Sources, 325, 732, 10.1016/j.jpowsour.2016.06.094 Jeon, 2021, Enhancing electrode wettability in lithium-ion battery via particle-size ratio control, Appl. Mater. Today, 22 Bai, 2016, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci., 9, 3221, 10.1039/C6EE01674J Saito, 2018, Stress-free pathway for ion transport in the separator membrane of lithium secondary batteries, J. Phys. Chem. C, 122, 18311, 10.1021/acs.jpcc.8b05170 Eftekharnia, 2019, Toward practical Li metal batteries: importance of separator compatibility using ionic liquid electrolytes, ACS Appl. Energy Mater., 2, 6655, 10.1021/acsaem.9b01175 Saito, 2019, Factors determining ionic mobility in ion migration pathways of polypropylene (PP) separator for lithium secondary batteries, J. Phys. Chem. C, 123, 21888, 10.1021/acs.jpcc.9b04742 Zhu, 2020, Binder-free TiO2-coated polypropylene separators for advanced lithium-ion batteries, Energy Technol., 8, 10.1002/ente.202000228 Michot, 2000, Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer, Electrochim. Acta, 45, 1347, 10.1016/S0013-4686(99)00343-6 Djian, 2007, Lithium-ion batteries with high charge rate capacity: influence of the porous separator, J. Power Sources, 172, 416, 10.1016/j.jpowsour.2007.07.018 Hussain, 2020, Porous membrane with improved dendrite resistance for high-performance lithium metal-based battery, J. Membr. Sci., 605, 10.1016/j.memsci.2020.118108 Wang, 2020, Mechanistics of lithium-metal battery performance by separator architecture design, ACS Appl. Mater. Interfaces, 12, 556, 10.1021/acsami.9b16186 Pan, 2018, Nanocellulose modified polyethylene separators for lithium metal batteries, Small, 14, 10.1002/smll.201704371 Liao, 2020, A flame retardant sandwiched separator coated with ammonium polyphosphate wrapped by SiO2 on commercial polyolefin for high performance safety lithium metal batteries, Appl. Mater. Today, 21 Costa, 2019, Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes, Energy Storage Mater., 22, 346, 10.1016/j.ensm.2019.07.024 Love, 2011, Thermomechanical analysis and durability of commercial micro-porous polymer Li-ion battery separators, J. Power Sources, 196, 2905, 10.1016/j.jpowsour.2010.10.083 Habumugisha, 2021, Stretch-induced structural evolution of pre-oriented isotactic polypropylene films: an in-situ synchrotron radiation SAXS/WAXS study, Polymer, 214, 10.1016/j.polymer.2020.123234 Wan, 2019, Biaxial stretch-induced structural evolution of polyethylene gel films: crystal melting recrystallization and tilting, Polymer, 164, 59, 10.1016/j.polymer.2019.01.021 Tabatabaei, 2009, Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation, Polymer, 50, 4228, 10.1016/j.polymer.2009.06.071 Alcock, 2009, The effect of processing conditions on the mechanical properties and thermal stability of highly oriented PP tapes, Eur. Polym. J., 45, 2878, 10.1016/j.eurpolymj.2009.06.025 Aou, 2005, Morphological study on thermal shrinkage and dimensional stability associated with oriented poly(lactic acid), Macromolecules, 38, 7730, 10.1021/ma051022e Diaz, 2016, Multivariable dependency of thermal shrinkage in highly aligned polypropylene tapes for self-reinforced polymer composites, Compos. Part A Appl. Sci. Manuf., 90, 771, 10.1016/j.compositesa.2016.09.004 Fu, 2014, Nature of molecular network in thermal shrinkage behavior of oriented high-density polyethylene, J. Polym. Sci. Part B Polym. Phys., 52, 368, 10.1002/polb.23420 Xiong, 2018, Thermal shrinkage and microscopic shutdown mechanism of polypropylene separator for lithium-ion battery: in-situ ultra-small angle X-ray scattering study, J. Membr. Sci., 545, 213, 10.1016/j.memsci.2017.10.001 Ren, 2021, Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater., 34, 563, 10.1016/j.ensm.2020.10.020 Babiker, 2021, Superior lithium battery separator with extraordinary electrochemical performance and thermal stability based on hybrid UHMWPE/SiO2 nanocomposites via the scalable biaxial stretching process, Compos. Part B Eng., 211, 10.1016/j.compositesb.2021.108658 Lopez, 1992, Synthesis, structure, and properties of poly(4-methyl-1 -pentene), J. Macromol. Sci. Part C, 32, 301, 10.1080/15321799208021429 Markova, 2020, Poly(4-methyl-1-pentene) as a semicrystalline polymeric matrix for gas separating membranes, J. Membr. Sci., 598, 10.1016/j.memsci.2019.117754 Merkel, 2017, Characterization of structure and properties of polymer films made from blends of polyethylene with poly(4-methyl-1-pentene), J. Mater. Res., 32, 451, 10.1557/jmr.2016.471 Gupta, 2017, Evaluation of poly(4-methyl-1-pentene) as a dielectric capacitor film for high-temperature energy storage applications, J. Polym. Sci. Part B Polym. Phys., 55, 1497, 10.1002/polb.24399 Meng, 2015, A universal equipment for biaxial stretching of polymer films, Chin. J. Polym. Sci., 33, 754, 10.1007/s10118-015-1623-1 Zeng, 2019, Effects of heat setting on the morphology and performance of polypropylene separator for lithium ion batteries, Ind. Eng. Chem. Res., 58, 2217, 10.1021/acs.iecr.8b05782 Cui, 2014, A novel apparatus combining polymer extrusion processing and X-ray scattering, Polym. Test., 33, 40, 10.1016/j.polymertesting.2013.11.004 Langford, 1978, Scherrer after sixty years: a survey and some new results in the determination of crystallite size, J. Appl. Crystallogr., 11, 102, 10.1107/S0021889878012844 Ding, 2020, The compression behavior, microstructure evolution and properties variation of three kinds of commercial battery separators under compression load, J. Power Sources, 451, 10.1016/j.jpowsour.2020.227819 Zhang, 2004, Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles, Polymer, 45, 1913, 10.1016/j.polymer.2004.01.037 Chen, 2020, Morphology, thermal behavior, rheological, and mechanical properties of polypropylene/polystyrene blends based on elongation flow, Polym. Adv. Technol., 31, 2722, 10.1002/pat.4998 Paszkiewicz, 2018, Characterization of polypropylene/poly(2,6-dimethyl-1,4-phenylene oxide) blends with improved thermal stability, Polym. Bull., 75, 3679, 10.1007/s00289-017-2224-7 Toyoda, 2004 Li, 2017, Poly (ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries, J. Membr. Sci., 530, 125, 10.1016/j.memsci.2017.02.027 Kassem, 2012, Calendar aging of a graphite/LiFePO4 cell, J. Power Sources, 208, 296, 10.1016/j.jpowsour.2012.02.068 Yang, 2018, A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries, Energy, 145, 486, 10.1016/j.energy.2017.12.144 Gyenes, 2014, Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries, J. Electrochem. Soc., 162, A278, 10.1149/2.0191503jes