Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte
Tài liệu tham khảo
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Lopez, 2019, Designing polymers for advanced battery chemistries, Nat. Rev. Mater., 4, 312, 10.1038/s41578-019-0103-6
Miller, 2017, Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries, Acc. Chem. Res., 50, 590, 10.1021/acs.accounts.6b00568
Manthiram, 2017, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103
Liu, 2017, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2, 17035, 10.1038/nenergy.2017.35
Xu, 2021, A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density, eScience, 1, 60, 10.1016/j.esci.2021.08.002
Diercks, 2017, The atom, the molecule, and the covalent organic framework, Science, 355, 10.1126/science.aal1585
Geng, 2020, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev., 120, 8814, 10.1021/acs.chemrev.9b00550
Gui, 2020, Three-dimensional covalent organic frameworks: from topology design to applications, Acc. Chem. Res., 53, 2225, 10.1021/acs.accounts.0c00357
Yusran, 2019, Postsynthetic functionalization of covalent organic frameworks, Natl. Sci. Rev., 7, 170, 10.1093/nsr/nwz122
Han, 2020, Chiral covalent organic frameworks: design, synthesis and property, Chem. Soc. Rev., 49, 6248, 10.1039/D0CS00009D
Liu, 2020, Pyrimidazole-based covalent organic frameworks: integrating functionality and ultrastability via Isocyanide chemistry, J. Am. Chem. Soc., 142, 20956, 10.1021/jacs.0c10919
Wang, 2020, Covalent organic frameworks for separation applications, Chem. Soc. Rev., 49, 708, 10.1039/C9CS00827F
Liu, 2020, Covalent-organic-framework-based composite materials, Chem, 6, 3172, 10.1016/j.chempr.2020.08.021
Li, 2019, Recent progress in covalent organic frameworks as solid-state ion conductors, ACS Mater. Lett., 1, 327, 10.1021/acsmaterialslett.9b00185
Wang, 2021, Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications, Nat. Commun., 12, 1982, 10.1038/s41467-021-22288-9
Zhang, 2019, Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte, J. Am. Chem. Soc., 141, 1227, 10.1021/jacs.8b07670
Guo, 2019, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks, J. Am. Chem. Soc., 141, 1923, 10.1021/jacs.8b13551
Guo, 2019, Solvent-free, single lithium-ion conducting covalent organic frameworks, J. Am. Chem. Soc., 141, 5880, 10.1021/jacs.9b00543
Xu, 2018, Ion conduction in polyelectrolyte covalent organic frameworks, J. Am. Chem. Soc., 140, 7429, 10.1021/jacs.8b03814
Hu, 2019, Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity, J. Am. Chem. Soc., 141, 7518, 10.1021/jacs.9b02448
Vazquez-Molina, 2016, Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity, J. Am. Chem. Soc., 138, 9767, 10.1021/jacs.6b05568
Chen, 2018, Cationic covalent organic framework nanosheets for fast Li-ion conduction, J. Am. Chem. Soc., 140, 896, 10.1021/jacs.7b12292
Zhao, 2020, Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode, J. Mater. Chem. A, 8, 3459, 10.1039/C9TA13384D
Cheng, 2020, Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors, Adv. Energy Mater., 10, 10.1002/aenm.201904230
Montoro, 2017, Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework, J. Am. Chem. Soc., 139, 10079, 10.1021/jacs.7b05182
Sasmal, 2018, Superprotonic conductivity in flexible porous covalent organic framework membranes, Angew. Chem. Int. Ed., 57, 10894, 10.1002/anie.201804753
Guo, 2020, Proton conductive covalent organic frameworks, Coord. Chem. Rev., 422, 10.1016/j.ccr.2020.213465
Castano, 2019, Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks, ACS Cent. Sci., 5, 1892, 10.1021/acscentsci.9b00944
Jiang, 2019, Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde, J. Am. Chem. Soc., 141, 14981, 10.1021/jacs.9b08017
He, 2020, De novo design of covalent organic framework membranes toward ultrafast anion transport, Adv. Mater., 32, 10.1002/adma.202001284
Kandambeth, 2019, Covalent organic frameworks: chemistry beyond the structure, J. Am. Chem. Soc., 141, 1807, 10.1021/jacs.8b10334
Li, 2020, Construction of covalent organic frameworks via three-component one-pot strecker and povarov reactions, J. Am. Chem. Soc., 142, 6521, 10.1021/jacs.0c00969
Yu, 2020, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications, J. Am. Chem. Soc., 142, 12903, 10.1021/jacs.0c05130
Liang, 2020, Two-dimensional covalent organic frameworks with hierarchical porosity, Chem. Soc. Rev., 49, 3920, 10.1039/D0CS00049C
Zhao, 2021, Covalent organic frameworks (COFs) for electrochemical applications, Chem. Soc. Rev., 50, 6871, 10.1039/D0CS01569E
Su, 2020, Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions, J. Am. Chem. Soc., 142, 13316, 10.1021/jacs.0c05970
Yang, 2020, Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking, J. Am. Chem. Soc., 142, 6856, 10.1021/jacs.0c00365
Keller, 2021, Optoelectronic processes in covalent organic frameworks, Chem. Soc. Rev., 50, 1813, 10.1039/D0CS00793E
He, 2020, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Prog. Mater. Sci., 114, 10.1016/j.pmatsci.2020.100687
Wang, 2017, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci., 69, 22, 10.1016/j.progpolymsci.2017.02.001
Liu, 2019, Fire-safe polyesters enabled by end-group capturing chemistry, Angew. Chem. Int. Ed., 58, 9188, 10.1002/anie.201900356
Ryu, 2010, Thermally induced structural transformation of bisphenol-1,2,3-triazole polymers: smart, self-extinguishing materials, Angew. Chem. Int. Ed., 49, 9644, 10.1002/anie.201005456
Fang, 2014, Designed synthesis of large-pore crystalline polyimide covalent organic frameworks, Nat. Commun., 5, 4503, 10.1038/ncomms5503
Park, 2007, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254, 10.1126/science.1146744
Guo, 2013, Synthesis and characterization of thermally rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties, J. Mater. Chem. A, 1, 262, 10.1039/C2TA00799A
Lin, 2018, Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen, Chem. Eur. J., 24, 18487, 10.1002/chem.201802040
Zhang, 2018, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems, Chem. Soc. Rev., 47, 7426, 10.1039/C8CS00561C
Wei, 2018, Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation properties, J. Mater. Chem. A, 6, 8633, 10.1039/C7TA11283A
Xie, 2019, Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction, Angew. Chem. Int. Ed., 58, 15742, 10.1002/anie.201909554
Meng, 2021, Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation, Angew. Chem. Int. Ed., 60, 13614, 10.1002/anie.202104375
Ashraf, 2019, Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction, Chem. Eur. J., 25, 13479, 10.1002/chem.201903011