Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte

eScience - Tập 2 - Trang 311-318 - 2022
Zhifang Wang1,2, Yushu Zhang1, Penghui Zhang1, Dong Yan1, Jinjin Liu1, Yao Chen1,3, Qi Liu4, Peng Cheng1,2, Michael J. Zaworotko5, Zhenjie Zhang1,2
1Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
2Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
3College of Pharmacy Nankai University, Tianjin 300071, China
4Department of Physics, City University of Hong Kong, Hong Kong 999077, China
5Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland

Tài liệu tham khảo

Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Lopez, 2019, Designing polymers for advanced battery chemistries, Nat. Rev. Mater., 4, 312, 10.1038/s41578-019-0103-6 Miller, 2017, Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries, Acc. Chem. Res., 50, 590, 10.1021/acs.accounts.6b00568 Manthiram, 2017, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 16103, 10.1038/natrevmats.2016.103 Liu, 2017, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2, 17035, 10.1038/nenergy.2017.35 Xu, 2021, A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density, eScience, 1, 60, 10.1016/j.esci.2021.08.002 Diercks, 2017, The atom, the molecule, and the covalent organic framework, Science, 355, 10.1126/science.aal1585 Geng, 2020, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev., 120, 8814, 10.1021/acs.chemrev.9b00550 Gui, 2020, Three-dimensional covalent organic frameworks: from topology design to applications, Acc. Chem. Res., 53, 2225, 10.1021/acs.accounts.0c00357 Yusran, 2019, Postsynthetic functionalization of covalent organic frameworks, Natl. Sci. Rev., 7, 170, 10.1093/nsr/nwz122 Han, 2020, Chiral covalent organic frameworks: design, synthesis and property, Chem. Soc. Rev., 49, 6248, 10.1039/D0CS00009D Liu, 2020, Pyrimidazole-based covalent organic frameworks: integrating functionality and ultrastability via Isocyanide chemistry, J. Am. Chem. Soc., 142, 20956, 10.1021/jacs.0c10919 Wang, 2020, Covalent organic frameworks for separation applications, Chem. Soc. Rev., 49, 708, 10.1039/C9CS00827F Liu, 2020, Covalent-organic-framework-based composite materials, Chem, 6, 3172, 10.1016/j.chempr.2020.08.021 Li, 2019, Recent progress in covalent organic frameworks as solid-state ion conductors, ACS Mater. Lett., 1, 327, 10.1021/acsmaterialslett.9b00185 Wang, 2021, Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications, Nat. Commun., 12, 1982, 10.1038/s41467-021-22288-9 Zhang, 2019, Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte, J. Am. Chem. Soc., 141, 1227, 10.1021/jacs.8b07670 Guo, 2019, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks, J. Am. Chem. Soc., 141, 1923, 10.1021/jacs.8b13551 Guo, 2019, Solvent-free, single lithium-ion conducting covalent organic frameworks, J. Am. Chem. Soc., 141, 5880, 10.1021/jacs.9b00543 Xu, 2018, Ion conduction in polyelectrolyte covalent organic frameworks, J. Am. Chem. Soc., 140, 7429, 10.1021/jacs.8b03814 Hu, 2019, Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity, J. Am. Chem. Soc., 141, 7518, 10.1021/jacs.9b02448 Vazquez-Molina, 2016, Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity, J. Am. Chem. Soc., 138, 9767, 10.1021/jacs.6b05568 Chen, 2018, Cationic covalent organic framework nanosheets for fast Li-ion conduction, J. Am. Chem. Soc., 140, 896, 10.1021/jacs.7b12292 Zhao, 2020, Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode, J. Mater. Chem. A, 8, 3459, 10.1039/C9TA13384D Cheng, 2020, Building lithiophilic ion-conduction highways on garnet-type solid-state Li+ conductors, Adv. Energy Mater., 10, 10.1002/aenm.201904230 Montoro, 2017, Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework, J. Am. Chem. Soc., 139, 10079, 10.1021/jacs.7b05182 Sasmal, 2018, Superprotonic conductivity in flexible porous covalent organic framework membranes, Angew. Chem. Int. Ed., 57, 10894, 10.1002/anie.201804753 Guo, 2020, Proton conductive covalent organic frameworks, Coord. Chem. Rev., 422, 10.1016/j.ccr.2020.213465 Castano, 2019, Chemical control over nucleation and anisotropic growth of two-dimensional covalent organic frameworks, ACS Cent. Sci., 5, 1892, 10.1021/acscentsci.9b00944 Jiang, 2019, Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde, J. Am. Chem. Soc., 141, 14981, 10.1021/jacs.9b08017 He, 2020, De novo design of covalent organic framework membranes toward ultrafast anion transport, Adv. Mater., 32, 10.1002/adma.202001284 Kandambeth, 2019, Covalent organic frameworks: chemistry beyond the structure, J. Am. Chem. Soc., 141, 1807, 10.1021/jacs.8b10334 Li, 2020, Construction of covalent organic frameworks via three-component one-pot strecker and povarov reactions, J. Am. Chem. Soc., 142, 6521, 10.1021/jacs.0c00969 Yu, 2020, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications, J. Am. Chem. Soc., 142, 12903, 10.1021/jacs.0c05130 Liang, 2020, Two-dimensional covalent organic frameworks with hierarchical porosity, Chem. Soc. Rev., 49, 3920, 10.1039/D0CS00049C Zhao, 2021, Covalent organic frameworks (COFs) for electrochemical applications, Chem. Soc. Rev., 50, 6871, 10.1039/D0CS01569E Su, 2020, Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions, J. Am. Chem. Soc., 142, 13316, 10.1021/jacs.0c05970 Yang, 2020, Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking, J. Am. Chem. Soc., 142, 6856, 10.1021/jacs.0c00365 Keller, 2021, Optoelectronic processes in covalent organic frameworks, Chem. Soc. Rev., 50, 1813, 10.1039/D0CS00793E He, 2020, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Prog. Mater. Sci., 114, 10.1016/j.pmatsci.2020.100687 Wang, 2017, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci., 69, 22, 10.1016/j.progpolymsci.2017.02.001 Liu, 2019, Fire-safe polyesters enabled by end-group capturing chemistry, Angew. Chem. Int. Ed., 58, 9188, 10.1002/anie.201900356 Ryu, 2010, Thermally induced structural transformation of bisphenol-1,2,3-triazole polymers: smart, self-extinguishing materials, Angew. Chem. Int. Ed., 49, 9644, 10.1002/anie.201005456 Fang, 2014, Designed synthesis of large-pore crystalline polyimide covalent organic frameworks, Nat. Commun., 5, 4503, 10.1038/ncomms5503 Park, 2007, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science, 318, 254, 10.1126/science.1146744 Guo, 2013, Synthesis and characterization of thermally rearranged (TR) polymers: influence of ortho-positioned functional groups of polyimide precursors on TR process and gas transport properties, J. Mater. Chem. A, 1, 262, 10.1039/C2TA00799A Lin, 2018, Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen, Chem. Eur. J., 24, 18487, 10.1002/chem.201802040 Zhang, 2018, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems, Chem. Soc. Rev., 47, 7426, 10.1039/C8CS00561C Wei, 2018, Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation properties, J. Mater. Chem. A, 6, 8633, 10.1039/C7TA11283A Xie, 2019, Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction, Angew. Chem. Int. Ed., 58, 15742, 10.1002/anie.201909554 Meng, 2021, Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation, Angew. Chem. Int. Ed., 60, 13614, 10.1002/anie.202104375 Ashraf, 2019, Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction, Chem. Eur. J., 25, 13479, 10.1002/chem.201903011