Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight

Journal of Polymers and the Environment - Tập 22 - Trang 479-487 - 2014
Jit Pal1, Sunita Sanwaria1, Aman Choudhary1, Kapeesh Thakur1, Bhanu Nandan1, Rajiv K. Srivastava1
1Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India

Tóm tắt

Biodegradability and biocompatibility of poly(ε-caprolactone) (PCL) are the prime properties which advanced the use of this polymer in fields of tissue engineering and biomedicals. Being an aliphatic polyester, PCL is prone to undergo trans-esterification which is one of the mechanisms reported for its degradation besides being used in making its copolymers. Trans-esterification occurs both, inter- and intra-molecularly and in this work we report that the mechanism of trans-esterification depends on the molecular weight of the polymer when it is subjected to 160 °C for time up to 24 h. For low molecular weight PCL (Mp = 10,000 g/mol) inter-molecular trans-esterification is the predominant mechanism while for the high molecular weight PCL (Mp = 80,000 g/mol) it is intra-molecular. A mid molecular weight PCL (Mp = 43,000 g/mol) showed presence of both, inter- as well as intra-molecular trans-esterification, when heated at 160 °C for 24 h. A decrease in relative crystallinity for all the samples showed reduction in crystalline component of the polymer confirming occurrence of trans-esterification at chosen conditions. An increase in tensile strength and modulus is observed after treatment at 160 °C for 24 h due to formation of more entangled network of polymer chains as a result of trans-esterification reactions.

Tài liệu tham khảo

Woodruff MA, Hutmacher DW (2010) Prog Polym Sci 35(10):1217

Labet M, Thielemans W (2009) Chem Soc Rev 38(12):3484

Albertsson A-C, Srivastava RK (2008) Adv Drug Deliv Rev 60(9):1077

Hakkarainen M (2002) Adv Polym Sci 157:113

Hakkarainen M, Albertsson A-C (2008) Adv Polym Sci 211:85

Tokiwa Y, Ando T, Suzuki T (1976) J Ferment Technol 54(8):603

Fields RD, Rodriguez F, Finn RK (1974) J Appl Polym Sci 18(12):3571

Benedict CV, Cameron JA, Huang SJ (1983) J Appl Polym Sci 28(1):335

Murphy CA, Cameron JA, Huang SJ, Vinopal RT (1996) Appl Environ Microbiol 62(2):456

Oda Y, Asari H, Urakami T, Tonomura K (1995) J Ferment Bioeng 80(3):265

Eldsater C, Erlandsson B, Renstad R, Albertsson A-C, Karlsson S (1999) Polymer 41(4):1297

Lefebvre F, David C, Vander WC (1994) Polym Degrad Stab 45(3):347

Ohtaki A, Akakura N, Nakasaki K (1998) Polym Degrad Stab 62(2):279

Toncheva V, Van Den BA, Schacht E, Mergaert J, Swings J (1996) J Environ Polym Degrad 4(2):71

Gan Z, Liang Q, Zhang J, Jing X (1997) Polym Degrad Stab 56(2):209

Iwabuchi S, Jaacks V, Kern W (1976) Makromol Chem 177(9):2675

Ouhadi T, Stevens C, Teyssie P (1976) J Appl Polym Sci 20(11):2963

Garozzo D, Giuffrida M, Montaudo G (1986) Macromolecules 19(6):1643

Plage B, Schulten HR (1990) Macromolecules 23(10):2642

Day M, Cooney JD, Shaw K, Watts J (1998) J Therm Anal Calorim 52(2):261

Persenaire O, Alexandre M, Degee P, Dubois P (2001) Biomacromolecules 2(1):288

Aoyagi Y, Yamashita K, Doi Y (2002) Polym Degrad Stab 76(1):53

Sivalingam G, Madras G (2003) Polym Degrad Stab 80(1):11

Xie W, Gan Z (2009) Polym Degrad Stab 94(7):1040

Unger M, Vogel C, Siesler HW (2010) Appl Spectrosc 64(7):805

Kricheldorf HR, Kreiser I (1987) J Macromol Sci Chem A24(11):1345

Lipik VT, Widjaja LK, Liow SS, Abadie MJM, Venkatraman SS (2010) Polym Degrad Stab 95(12):2596

Srivastava RK, Albertsson A-C (2007) Macromolecules 40(13):4464

Ma D, Xiang X, Luo X, Nishi T (1997) Polymer 38(5):1131

Yang IK, Hong CY, Pan PH (2003) Int Polym Process 18(3):273

Chen J-L, Huang H-M, Li M-S, Chang F-C (1999) J Appl Polym Sci 71(1):75

Shieh Y-T, Lin Y-T (2007) Eur Polym J 43(5):1847

Pal J, Kankariya N, Sanwaria S, Nandan B, Srivastava RK (2013) Mater Sci Eng C Mater Biol Appl 33(7):4213

Crescenzi V, Manzini G, Calzolari G, Borri C (1972) Eur Polym J 8(3):449