Thermally Conductive and Insulating Epoxy Composites by Synchronously Incorporating Si-sol Functionalized Glass Fibers and Boron Nitride Fillers
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yang, X. L.; Li, K.; Xu, M. Z.; Liu, X. B. Designing a phthalonitrile/benzoxazine blend for the advanced GFRP composite material. Chinese J. Polym. Sci.2018, 36, 106–112.
Xu, X.; Zhang, Y.; Jiang, J.; Wang, H.; Zhao, X.; Li, Q.; Lu, W. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films. Compos. Sci. Technol.2017, 149, 20–27.
Agrawal, S.; Singh, K. K.; Sarkar, P. K. A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments. Tribol. Int.2016, 96, 217–224.
Park, D. W.; Oh, G. H.; Kim, H. S. Predicting the stacking sequence of E-glass fiber reinforced polymer (GFRP) epoxy composite using terahertz time-domain spectroscopy (THz-TDS) system. Compos. Part B Eng.2017, 177, 107385.
Shahkhosravi, N. A.; Yousefi, J.; Najafabadi, M. A.; Burvill, C.; Minak, G. Fatigue life reduction of GFRP composites due to delamination associated with the introduction of functional discontinuities. Compos. Part B Eng.2019, 163, 536–547.
Rahmat, M.; Ashrafi, B.; Naftel, A.; Djokic, D.; Martinez-Rubi, Y.; Jakubinek, M. B.; Simard, B. Enhanced shear performance of hybrid glass fiber-epoxy laminates modified with boron nitride nanotubes. ACS Appl. Nano Mater.2018, 1, 2709–2717.
Gu, S. L.; Liu, H. H.; Cao, H.; Mercier, C.; Li, Y. J. Investigations on the interactions between Li-TFSI and glass fibers in the ternary PP/GF/Li-TFSI composites. Chinese J. Polym. Sci.2018, 36, 113–118.
Halder, S.; Ahemad, S.; Das, S.; Wang, J. Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl. Mater. Interfaces2016, 8, 1695–1706.
Slobodian, P.; Lloret, Pertegás S.; Riha, P.; Matyas, J.; Olejnik, R.; Schledjewski, R.; Kovar, M. Glass fiber/epoxy composites with integrated layer of carbon nanotubes for deformation detection. Compos. Sci. Technol.2018, 156, 61–69.
Tang, Y.; Gu, J.; Yu, Y.; Kong, J. Preparation of POSS/quartz fibers/cyanate ester resins laminated composites. Pylym. Compos.2015, 36, 2017–2021.
Zhang, L. X.; Chang, Q.; Sun, Z.; Zhang, J. J.; Qi, J. L.; Feng, J. C. Wetting of AgCuTi alloys on quartz fiber reinforced composite modified by vertically aligned carbon nanotubes. Carbon2019, 154, 375–383.
Alsaadi, M.; Bulut, M.; Erklig, A.; Jabbar, A. Nano-silica inclusion effects on mechanical and dynamic behavior of fiber reinforced carbon/Kevlar with epoxy resin hybrid composites. Compos. Part B Eng.2018, 152, 169–179.
Tang, L.; Dang, J.; He, M.; Li, J.; Kong, J.; Tang, Y.; Gu, J. Preparation and properties of cyanate-based wave-transparent laminated composites reinforced by dopamine/POSS functionalized Kevlar cloth. Compos. Sci. Technol.2019, 169, 120–126.
Yu, L.; Lu, F.; Huang, X.; Liu, Y.; Li, M.; Pan, H.; Wu, L.; Huang, Y.; Hu, Z. Facile interface design strategy for improving the uvioresistant and self-healing properties of poly(p-phenylene benzobisoxazole) fibers. ACS Appl. Mater. Interfaces2019, 11, 39292–39303.
Liu, Z.; Zhang, J.; Tang, L.; Zhou, Y.; Lin, Y.; Wang, R.; Kong, J.; Tang, Y.; Gu, J. Improved wave-transparent performances and enhanced mechanical properties for fluoride-containing PBO precursor modified cyanate ester resins and their PBO fibers/cyanate ester composites. Compos. Part B Eng. 2019, 178, 107466.
Bhanuprakash, L.; Ali, A.; Mokkoth, R.; Varghese, S. Mode I and Mode II interlaminar fracture behavior of E-glass fiber reinforced epoxy composites modified with reduced exfoliated graphite oxide. Polym. Compos.2018, 39, E2506–E2518.
Mahmood, H.; Vanzetti, L.; Bersani, M.; Pegoretti, A. Mechanical properties and strain monitoring of glass-epoxy composites with graphene-coated fibers. Compos. Part A-Appl. S.2018, 177, 112–123.
Balkova, R.; Jancar, J.; Cech, V. Effect of RF-plasma deposition parameters on the composition and properties of organic layers deposited on glass fibers. Compos. Sci. Technol.2009, 69, 2485–2490.
Cech, V.; Knob, A.; Hosein, H. A.; Babik, A.; Lepcio, P.; Ondreas, F.; Drzal, L. T. Enhanced interfacial adhesion of glass fibers by tetravinylsilane plasma modification. Compos. Part A-Appl. S.2014, 58, 84–89.
Yang, W.; Zhang, Y. R.; Yuen, A. C. Y.; Chen, T. B. Y.; Chan, M. C.; Peng, L. Z.; Yang, W. J.; Zhu, S. E.; Yang, B. H.; Hu, K. H.; Yeoh, G. H.; Lu, H. D. Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers: effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate). Chem. Eng. J.2017, 321, 257–267.
Safi, S.; Zadhoush, A.; Masoomi, M. Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite. Polym. Compos.2016, 37, 91–100.
Li, S.; Lin, Q.; Zhu, H.; Hou, H.; Li, Y.; Wu, Q.; Cui, C. Improved mechanical properties of epoxy-based composites with hyperbranched polymer grafting glass-fiber. Polym. Adv. Technol. 2016, 27, 898–904.
Luo, N.; Zhong, H.; Yang, M.; Yuan, X.; Fan, Y. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane. J. Environ. Sci.2016, 39, 208–217.
Asadi, A.; Miller, M.; Moon, R. J.; Kalaitzidou, K. Improving the interfacial and mechanical properties of short glass fiber/epoxy composites by coating the glass fibers with cellulose nanocrystals. Express. Polym. Lett.2016, 10, 587–597.
Tang, L.; He, M.; Na, X.; Guan, X.; Zhang, R.; Zhang, J.; Gu, J. Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos. Commun.2019, 16, 5–10.
Yang, X.; Guo, Y.; Han, Y.; Li, Y.; Ma, T.; Chen, M.; Kong, J.; Gu, J. Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos. Part B Eng.2019, 175, 107070.
Yeo, H.; Islam, A. M., You, N. H.; Ahn, S.; Goh, M.; Hahn, J. R.; Jang, S. G. Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Compos. Sci. Technol.2017, 141, 99–105.
Zhang, G. D.; Fan, L.; Bai, L.; He, M. H.; Zhai, L.; Mo, S. Mesoscopic simulation assistant design of immiscible polyimide/BN blend films with enhanced thermal conductivity. Chinese J. Polym. Sci.2018, 36, 1394–1402.
Yang, X.; Liang, C.; Ma, T.; Guo, Y.; Kong, J.; Gu, J.; Zhu, J. A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv. Compos. Hybrid. Mater.2018, 1, 207–230.
Ji, C.; Yan, C.; Wang, Y.; Xiong, S.; Zhou, F.; Li, Y.; Sun, R.; Wong, C. P. Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network. Compos. Part B Eng.2019, 163, 363–370.
Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic effect of hybrid fillers of boron nitride, graphene nanoplatelets, and short carbon fibers for enhanced thermal conductivity and electrical resistivity of epoxy nanocomposites. Compos. Part A-Appl. S.2019, 117, 11–22.
Ruan, K.; Guo, Y.; Tang, Y.; Zhang, Y.; Zhang, J.; He, M.; Kong, J.; Gu, J. Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique. Compos. Commun.2018, 10, 68–72.
Huang, T.; Zhang, G.; Gao, Y. A novel silver nanoparticle-deposited aluminum oxide hybrids for epoxy composites with enhanced thermal conductivity and energy density. Compos. Interfaces2019, 26, 1001–1011.
Feng, Y.; He, C.; Wen, Y.; Zhou, X.; Xie, X.; Ye, Y.; Mai, Y. W. Multifunctional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol.2018, 160, 42–49.
Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composite. Compos. Part A-Appl. S.2017, 98, 25–31.
Han, J.; Du, G.; Gao, W.; Bai, H. An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Adv. Funct. Mater.2019, 29, 1900412.
Huang, X.; Iizuka, T.; Jiang, P.; Ohki, Y.; Tanaka, T. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J. Phys. Chem. C2012, 116, 13629–13639.
Chung, S. L.; Lin, J. S. Thermal conductivity of epoxy resin composites filled with combustion-synthesized AlN powder. Polym. Compos.2018, 39, E2125–E2133.
Xiao, C.; Chen, L.; Tang, Y.; Zhang, X.; Zheng, K.; Tian, X. Enhanced thermal conductivity of silicon carbide nanowires (SiCw)/epoxy resin composite with segregated structure. Compos. Part A-Appl. S.2019, 116, 98–105.
Ma, T.; Zhao, Y.; Ruan, K.; Liu, X.; Zhang, J.; Guo, Y.; Yang, X.; Kong, J.; Gu, J. Highly thermal conductivities, excellent mechanical robustness and flexibility, and outstanding thermal stabilities of aramid nanofiber composite papers with nacre-mimetic layered structures. ACS Appl. Mater. Interfaces2020, 12, 1677–1686.
Han, Y.; Shi, X.; Yang, X.; Guo, Y.; Zhang, J.; Kong, J.; Gu, J. Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers. Compos. Sci. Technol.2020, 187, 107944.
Hu, J.; Huang, Y.; Yao, Y.; Pan, G.; Sun, J.; Zeng, X.; Sun, R.; Xu, J. B.; Song, B.; Wong, C. P. Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces2017, 9, 13544–13553.
Jiang, Y.; Shi, X.; Feng, Y.; Li, S.; Zhou, X.; Xie, X. Enhanced thermal conductivity and ideal dielectric properties of epoxy composites containing polymer modified hexagonal boron nitride. Compos. Part A-Appl. S.2018, 107, 657–664.
Yang, X.; Guo, Y.; Luo, X.; Zheng, N.; Ma, T.; Tan, J.; Li, C.; Zhang, Q.; Gu, J. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol.2018, 164, 59–64.
Choi, S.; Yang, J.; Kim, Y.; Nam, J.; Kim, K.; Shim, S. E. Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites. Compos. Sci. Technol.2014, 103, 8–15.
Burger, N.; Laachachi, A.; Mortazavi, B.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int. J. Heat Mass Tran.2015, 89, 505–513.
Luo, B.; Wang, X.; Wang, Y.; Li, L. Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A2014, 2, 510–519.
Xu, N.; Hu, L.; Zhang, Q.; Xiao, X.; Yang, H.; Yu, E. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl. Mater. Interfaces2015, 7, 27373–27381.
Wang, Z.; Liu, J.; Cheng, Y.; Chen, S.; Yang, M.; Huang, J.; Wang, H.; Wu, G.; Wu, H. Alignment of boron nitride nanofibers in epoxy composite films for thermal conductivity and dielectric breakdown strength improvement. Nanomaterials2018, 9, 242.
Chen, S.; Cheng, Y.; Xie, Q.; Xiao, B.; Wang, Z.; Liu, J.; Wu, G. Enhanced breakdown strength of aligned-sodium-titanate-nanowire/epoxy nanocomposites and their anisotropic dielectric properties. Compos. Part A-Appl. S.2019, 120, 84–94.
Feng, C. P.; Wan, S. S.; Wu, W. C.; Bai, L.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Chen, J.; Yang, W. Electrically insulating, layer structured SiR/GNPs/BN thermal management materials with enhanced thermal conductivity and breakdown voltage. Compos. Sci. Technol.2018, 167, 456–462.
Yang, X.; Fan, S; Li, Y.; Guo, Y; Li, Y.; Ruan, K.; Zhang, S.; Zhang, J.; Kong, J.; Gu, J. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A-Appl. S.2020, 128, 105670.