Thermal treatment effect on the random lasing polarization of polymer optical fiber

Optics & Laser Technology - Tập 149 - Trang 107855 - 2022
Wenyu Du1, Xiaojuan Zhang1, Chao Li1, Zhigang Cao1, Siqi Li1, Liang Lu1, Sheng Cheng2, Jiajun Ma3, Junxi Zhang2, Benli Yu1, Zhijia Hu1,2,3
1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Opto-electronics Engineering, Anhui University, Hefei 230601, China
2School of Instrument Science and Opto-electronics Engineering, Laboratory of Optical Fibers and Micro-nano Photonics, Hefei University of Technology, Hefei, 230009, Anhui, China
3State Key Laboratory of Environment Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621000, Sichuan, China

Tài liệu tham khảo

Graydon, 2013, Random thoughts, Nat. Photon., 7, 164, 10.1038/nphoton.2013.39 Rotter, 2014, Playing pinball with light, Nat. Phys., 10, 412, 10.1038/nphys2960 Gomes, 2021, Recent advances and applications of random lasers and random fiber lasers, Prog. Quant. Electron, 78, 100343, 10.1016/j.pquantelec.2021.100343 Cao, 2003, Lasing in random media, WAVE RANDOM MEDIA, 13, R1, 10.1088/0959-7174/13/3/201 Wiersma, 1996, Light diffusion with gain and random lasers, Phys. Rev. E, 54, 4256, 10.1103/PhysRevE.54.4256 Cao, 1998, Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films, Appl. Phys. Lett., 73, 3656, 10.1063/1.122853 Hu, 2012, Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.253901 Xie, 2020, Multi-wavelength coherent random laser in bio-microfibers, Opt. Express, 28, 5179, 10.1364/OE.384105 Redding, 2012, Speckle-free laser imaging using random laser illumination, Nat Photonics, 6, 355, 10.1038/nphoton.2012.90 Xu, 2017, Highly sensitive fiber random-grating-based random laser sensor for ultrasound detection, Opt. Lett., 42, 1353, 10.1364/OL.42.001353 Ignesti, 2016, A new class of optical sensors: a random laser based device, Sci. Rep., 6, 1, 10.1038/srep35225 Gaio, 2017, Gain-based mechanism for p H sensing based on random lasing, Phys. Rev. Appl., 7, 10.1103/PhysRevApplied.7.034005 Boschetti, 2020, Spectral super-resolution spectroscopy using a random laser, Nat. Photon., 14, 177, 10.1038/s41566-019-0558-4 Tong, 2021, Flexible plasmonic random laser for wearable humidity sensing, Sci. China Inf. Sci., 64, 10.1007/s11432-020-3141-3 Hands, 2011, Band-edge and random lasing in paintable liquid crystal emulsions, Appl. Phys. Lett., 98, 141102, 10.1063/1.3574915 Ye, 2013, Thermally tunable random laser in dye-doped liquid crystals, J Mod Opt, 60, 1607, 10.1080/09500340.2013.844867 Azkargorta, 2011, Random lasing in Nd: LuVO 4 crystal powder, Opt. Express, 19, 19591, 10.1364/OE.19.019591 Cao, 2016, Random lasing in a colloidal quantum dot-doped disordered polymer, Opt. Express, 24, 9325, 10.1364/OE.24.009325 Fan, 2020, Random lasing of CsPbBr 3perovskite thin films pumped by modulated electron beam, Chin. Opt. Lett., 18, 10.3788/COL202018.011403 Shi, 2020, Low-cost biosensors based on a plasmonic random laser on fiber facet, Opt. Express, 28, 12233, 10.1364/OE.392661 Zhai, 2017, A RGB random laser on an optical fiber facet, RSC Adv., 7, 45852, 10.1039/C7RA07949D de Oliveira, 2020, Dye-doped electrospun fibers for use as random laser generator: The influence of spot size and scatter concentration, Opt. Mater., 101, 10.1016/j.optmat.2020.109722 Rafieipour, 2019, Random lasing emission from FTO and glass substrates coated with dye doped SU-8 epoxy based polymer, Opt. Laser Technol., 119, 10.1016/j.optlastec.2019.105602 Hu, 2013, Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser, Opt. Lett., 38, 4644, 10.1364/OL.38.004644 Hu, 2016, Polarized random laser emission from an oriented disorder polymer optical fiber, Opt. Lett., 41, 2584, 10.1364/OL.41.002584 Hu, 2017, Tunable random polymer fiber laser, Opt. Express, 25, 18421, 10.1364/OE.25.018421 Chen, 2019, Polymer-fiber random lasers based on pumping radiation effect, Phys. Scr., 94, 115509, 10.1088/1402-4896/ab293f Zhang, 2013, Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber, Opt. Express, 21, 8544, 10.1364/OE.21.008544 Hu, 2015, Random lasing from dye doped polymer optical fiber containing gold nanoparticles, J Opt, 17, 125403, 10.1088/2040-8978/17/12/125403 Ye, 2017, Study on the polarization of random lasers from dye-doped nematic liquid crystals, Nanoscale Res. Lett., 12, 27, 10.1186/s11671-016-1778-x Chen, 2017, “Polarization-asymmetric bidirectional random laser emission from a twisted nematic liquid crystal”,J, Appl. Phys., 121, 033102, 10.1063/1.4974476 Knitter, 2012, Emission polarization of random lasers in organic dye solutions, Opt. Lett., 37, 3621, 10.1364/OL.37.003621 Akbarzadeh, 2012, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-144 Kolhatkar, 2013, Tuning the magnetic properties of nanoparticles, Int. J. Mol. Sci., 14, 15977, 10.3390/ijms140815977 Khanbekyan, 2012, Nonlinear magneto-optical effects in Ba vapor, Eur. Phys. J. D, 66, 1, 10.1140/epjd/e2012-30139-8 Sadatgol, 2016, Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet with embedded-gold-wires, J. Appl. Phys., 119, 579, 10.1063/1.4943651 Fan, 2019, Magneto-Optical Metamaterials: Nonreciprocal Transmission and Faraday Effect Enhancement, Adv. Opt. Mater., 7, 1801420, 10.1002/adom.201801420 Hendrych, 2009, Magnetic behavior and domain structure in as-quenched, annealed, and stress-annealed cofecrsib ribbons, J. Magn. Magn. Mater., 321, 3771, 10.1016/j.jmmm.2009.07.032 Kang, 2019, Spectrometer based real-time magnetic faraday rotation spectroscopy of bi-yig thin films, J. Magn. Magn. Mater., 482, 61, 10.1016/j.jmmm.2019.03.035 Hoffmann, 2020, Spectroscopic ellipsometry and magneto-optical kerr effect spectroscopy study of thermally treated co60fe20b20 thin films, J. Phys. Condens. Matter, 32, 055702, 10.1088/1361-648X/ab4d2f Hamidi, 2011, Effect of magnetic annealing on magneto-optical properties of Ce : YIG thin films incorporating gold nanoparticles, J. Phys. D, 44, 416, 10.1088/0022-3727/44/30/305003 Briley, 2016, Effects of annealing and conformal alumina passivation on anisotropy and hysteresis of magneto-optical properties of cobalt slanted columnar thin films, Appl. Surf. Sci., 421, 320 Sharma, 2020, Crystallization of optically thick films of CoxFe80-xB20: evolution of optical, magneto-optical, and structural properties, Phys. Rev. B, 101, 10.1103/PhysRevB.101.054438 Neagu, 2006, The surface magnetism investigation of FeSiB amorphous thin films obtained by evaporation technique, Sens. Actuator A Phys., 129, 172, 10.1016/j.sna.2005.11.037 Corte-Leon, 2020, Stress-Induced Magnetic Anisotropy Enabling Engineering of Magnetic Softness and GMI Effect of Amorphous Microwires, Appl. Sci., 10, 981, 10.3390/app10030981 Fujiwara, 2021, Effect of annealing temperature on coercivity of amorphous fesibnb films, J. Magn. Magn. Mater., 540, 10.1016/j.jmmm.2021.168410 Lee, 2008, Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts, Small, 4, 143, 10.1002/smll.200700456