Thermal transport in polymeric materials and across composite interfaces

Applied Materials Today - Tập 12 - Trang 92-130 - 2018
Nitin Mehra1, Liwen Mu1, Tuo Ji1, Xutong Yang2, Jie Kong2, Junwei Gu2, Jiahua Zhu1
1Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, USA
2Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an Shaanxi 710072, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ashcroft, 1976

Kim, 2015, Strategies for engineering phonon transport in thermoelectrics, J. Mater. Chem. C, 3, 10336, 10.1039/C5TC01670C

Xu, 2001, Thermally conducting aluminum nitride polymer–matrix composites, Composites Part A, 32, 1749, 10.1016/S1359-835X(01)00023-9

Ishida, 1998, Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine, Thermochim. Acta, 320, 177, 10.1016/S0040-6031(98)00463-8

Ruh, 1992, Thermal conductivity of boron carbide–boron nitride composites, J. Am. Ceram. Soc., 75, 2887, 10.1111/j.1151-2916.1992.tb05525.x

Pettersson, 1990, Theory of the thermal boundary resistance between dissimilar lattices, Phys. Rev. B, 42, 7386, 10.1103/PhysRevB.42.7386

Berman, 1973, Heat conductivity of non-metallic crystals, Contemp. Phys., 14, 101, 10.1080/00107517308213728

Chen, 2005

Chang-Lin Tien, 1998

Aleksandr Chernatynskiy, 2012, Thermal Transport in Nanostructured Materials

Ngo, 2004, Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays, Nano Lett., 4, 2403, 10.1021/nl048506t

Xu, 2006, Thermal properties of carbon nanotube array used for integrated circuit cooling, J. Appl. Phys., 100, 074302, 10.1063/1.2337254

Yi, 2006, Effect of rapid thermal annealing (RTA) on thermal properties of carbon nanofibre (CNF) arrays, J. Phys. D: Appl. Phys., 39, 4878, 10.1088/0022-3727/39/22/021

Srivastava, 1990

Asheghi, 1997, Phonon-boundary scattering in thin silicon layers, Appl. Phys. Lett., 71, 1798, 10.1063/1.119402

Chen, 1996, Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, J. Heat Transfer, 118, 539, 10.1115/1.2822665

Zeng, 2015, Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures, Sci. Rep., 5, 17131, 10.1038/srep17131

Siemens, 2010, Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams, Nat. Mater., 9, 26, 10.1038/nmat2568

Hu, 2015, Spectral mapping of thermal conductivity through nanoscale ballistic transport, Nat. Nanotechnol., 10, 701, 10.1038/nnano.2015.109

Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004

Zhang, 2014, Polymer nanofibers with outstanding thermal conductivity and thermal stability: fundamental linkage between molecular characteristics and macroscopic thermal properties, J. Phys. Chem. C, 118, 21148, 10.1021/jp5051639

Kittel, 2004

Glassbrenner, 1964, Thermal conductivity of silicon and germanium from 3K to the melting point, Phys. Rev., 134, A1058, 10.1103/PhysRev.134.A1058

Safa Kasap, 2006

Liu, 2015, Tunable mechanical and thermal properties of one-dimensional carbyne chain: phase transition and microscopic dynamics, J. Phys. Chem. C, 119, 24156, 10.1021/acs.jpcc.5b08026

Hirao, 2001, High thermal conductivity silicon nitride ceramic, MRS Bull., 26, 451, 10.1557/mrs2001.115

Slack, 1973, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids, 34, 321, 10.1016/0022-3697(73)90092-9

Virkar, 1989, Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminium nitride, J. Am. Ceram. Soc., 72, 2031, 10.1111/j.1151-2916.1989.tb06027.x

Jackson, 1997, High-thermal-conductivity aluminum nitride ceramics: the effect of thermodynamic, kinetic, and microstructural factors, J. Am. Ceram. Soc., 80, 1421, 10.1111/j.1151-2916.1997.tb03000.x

Slack, 1987, The intrinsic thermal conductivity of AlN, J. Phys. Chem. Solids, 48, 641, 10.1016/0022-3697(87)90153-3

Chen, 2012, Thermal conductivity of isotopically modified graphene, Nat. Mater., 11, 203, 10.1038/nmat3207

Che, 2000, Thermal conductivity of carbon nanotubes, Nanotechnology, 11, 65, 10.1088/0957-4484/11/2/305

Koh, 2009, Heat-transport mechanisms in superlattices, Adv. Funct. Mater., 19, 610, 10.1002/adfm.200800984

Choy, 1999, Elastic modulus and thermal conductivity of ultradrawn polyethylene, J. Polym. Sci., Part B: Polym. Phys., 37, 3359, 10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S

Abeles, 1963, Lattice thermal conductivity of disordered semiconductor alloys at high temperatures, Phys. Rev., 131, 1906, 10.1103/PhysRev.131.1906

Kim, 2006, Phonon scattering cross section of polydispersed spherical nanoparticles, J. Appl. Phys., 99, 084306, 10.1063/1.2188251

Henry, 2009, Anomalous heat conduction in polyethylene chains: theory and molecular dynamics simulations, Phys. Rev. B, 79, 144305, 10.1103/PhysRevB.79.144305

Henry, 2013, Thermal transport in polymers, Annu. Rev. Heat Transfer, 17, 485, 10.1615/AnnualRevHeatTransfer.2013006949

Nysten, 1995, Intra- and interchain thermal conduction in polymers, Synth. Met., 69, 67, 10.1016/0379-6779(94)02366-7

Shen, 2010, Polyethylene nanofibres with very high thermal conductivities, Nat. Nanotechnol., 5, 251, 10.1038/nnano.2010.27

Choy, 1980, Thermal conductivity of oriented crystalline polymers, J. Polym. Sci., Part B: Polym. Phys., 18, 1187

Singh, 2014, High thermal conductivity of chain-oriented amorphous polythiophene, Nat. Nanotechnol., 9, 384, 10.1038/nnano.2014.44

Choy, 1993, Thermal conductivity of gel–spun polyethylene fibers, J. Polym. Sci., Part B: Polym. Phys., 31, 365, 10.1002/polb.1993.090310315

Shirai, 2011, Improvement in carrier mobility of poly(3,4-ethylenedioxythiophene) nanowires synthesized in porous alumina templates, J. Polym. Sci., Part B: Polym. Phys., 49, 1762, 10.1002/polb.22376

Duvail, 2004, Effects of the confined synthesis on conjugated polymer transport properties, J. Phys. Chem. B, 108, 18552, 10.1021/jp046834b

Martin, 1995, Template synthesis of electronically conductive polymer nanostructures, Acc. Chem. Res., 28, 61, 10.1021/ar00050a002

Martin, 1996, Membrane-based synthesis of nanomaterials, Chem. Mater., 8, 1739, 10.1021/cm960166s

Lu, 2008, Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces, ACS Nano, 2, 2342, 10.1021/nn800443m

Smith, 1980, Ultra high strength polyethylene filaments by solution spinning/drawing, J. Mater. Sci., 15, 505, 10.1007/BF02396802

Cao, 2013, Polymer nanowire arrays with high thermal conductivity and superhydrophobicity fabricated by a nano-molding technique, Heat Transfer Eng., 34, 131, 10.1080/01457632.2013.703097

Cao, 2011, High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique, Polymer, 52, 1711, 10.1016/j.polymer.2011.02.019

Poulaert, 1990, Thermal-conductivity of highly oriented polyethylene fibers, Polym. Commun., 31, 148

Choy, 1977, Thermal conductivity of polymers, Polymer, 18, 984, 10.1016/0032-3861(77)90002-7

Hennig, 1967, Anisotropy and structure in uniaxially stretched amorphous high polymers, J. Polym. Sci., Part C: Polym. Symp., 16, 2751, 10.1002/polc.5070160528

Choy, 1981, Thermal diffusivity and conductivity of crystalline polymers, J. Appl. Polym. Sci., 26, 2325, 10.1002/app.1981.070260719

Godovsky, 1992

Henry, 2010, 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations, Phys. Rev. B, 82, 144308, 10.1103/PhysRevB.82.144308

Ghosh, 2010, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater., 9, 555, 10.1038/nmat2753

Hochbaum, 2008, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451, 163, 10.1038/nature06381

Kline, 1970, 247

Anderson, 1966, Thermal conductivity of polymers, Chem. Rev., 66, 677, 10.1021/cr60244a004

Zhang, 2015, Largely enhanced thermal conductivity of poly(vinylidene fluoride)/carbon nanotube composites achieved by adding graphene oxide, Carbon, 90, 242, 10.1016/j.carbon.2015.04.040

Choy, 1978, Thermal conductivity of highly oriented polyethylene, Polymer, 19, 155, 10.1016/0032-3861(78)90032-0

Tonpheng, 2009, Thermal conductivity, heat capacity, and cross-linking of polyisoprene/single-wall carbon nanotube composites under high pressure, Macromolecules, 42, 9295, 10.1021/ma902122u

Haggenmueller, 2007, Single wall carbon nanotube/polyethylene nanocomposites: thermal and electrical conductivity, Macromolecules, 40, 2417, 10.1021/ma0615046

Yu, 2014, Thermal conductivity of highly crystallized polyethylene, Polymer, 55, 195, 10.1016/j.polymer.2013.12.001

Zhang, 2008, Polymer transcrystallinity induced by carbon nanotubes, Polymer, 49, 1356, 10.1016/j.polymer.2008.01.018

Xu, 2007, Electrical property and microstructure analysis of poly(vinylidene fluoride)-based composites with different conducting fillers, Chem. Phys. Lett., 438, 196, 10.1016/j.cplett.2007.02.076

Agari, 1997, Thermal diffusivity and conductivity of PMMA/PC blends, Polymer, 38, 801, 10.1016/S0032-3861(96)00577-0

Hassan Ebadi-Dehaghani, 2012, Thermal conductivity of nanoparticles filled polymers

Hansen, 1972, Thermal conductivity of polyethylene: the effects of crystal size, density and orientation on the thermal conductivity, Polym. Eng. Sci., 12, 204, 10.1002/pen.760120308

Eiermann, 1964, Thermal conductivity of high polymers, J. Polym. Sci., Part C: Polym. Symp., 6, 157, 10.1002/polc.5070060118

Xie, 2013, High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers, Compos. Sci. Technol., 85, 98, 10.1016/j.compscitech.2013.06.010

Hansen, 1965, Thermal conductivity of high polymers, J. Polym. Sci., Part A: Gen. Pap., 3, 659

Hansen, 1966, Thermal conductivity of high polymers—the influence of molecular weight, Polym. Eng. Sci., 6, 260, 10.1002/pen.760060315

Kurt Ueberreiter, 1953, Spezifische Wärme, spezifisches Volumen, Temperatur- und Wärmeleitfähigkeit von Hochpolymeren Teil II. Kettenlängenabhängigkeit bei fraktionierten Polystyrolen, Zeitschrift für Naturforschung A, 8

Tomlinson, 1965, Effect of nuclear radiation on the thermal conductivity of polyethylene, Polym. Eng. Sci., 5, 44, 10.1002/pen.760050109

Hennig, 1963, Die Wärmeleitfähigkeit von Polyäthylen im Temperaturbereich von 20 bis 200°C, Kolloid-Zeitschrift und Zeitschrift für Polymere, 189, 114, 10.1007/BF01499502

Wang, 2013, Thermal conductivity of high-modulus polymer fibers, Macromolecules, 46, 4937, 10.1021/ma400612y

Choy, 1978, Thermal-conductivity of highly oriented polyethylene, Polymer, 19, 155, 10.1016/0032-3861(78)90032-0

Mergenthaler, 1992, Thermal-conductivity in ultraoriented polyethylene, Macromolecules, 25, 3500, 10.1021/ma00039a030

Xie, 2016, Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends, Macromolecules, 49, 972, 10.1021/acs.macromol.5b02477

Kikugawa, 2013, Effect of crosslink formation on heat conduction in amorphous polymers, J. Appl. Phys., 114, 034302, 10.1063/1.4813505

Eiermann, 1964, Modellmäßige Deutung der Wärmeleitfähigkeit von Hochpolymeren, Kolloid-Zeitschrift und Zeitschrift für Polymere, 198, 5, 10.1007/BF01499450

Boris, 2009, Thermal transport in polyethylene and at polyethylene–diamond interfaces investigated using molecular dynamics simulation, J. Phys.: Condens. Matter, 21, 084219

Rashidi, 2017, Thermal conductance in cross-linked polymers: effects of non-bonding interactions, J. Phys. Chem. B, 121, 4600, 10.1021/acs.jpcb.7b01377

Kim, 2015, High thermal conductivity in amorphous polymer blends by engineered interchain interactions, Nat. Mater., 14, 295, 10.1038/nmat4141

Zhang, 2015, Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding, RSC Adv., 5, 87981, 10.1039/C5RA18519J

Liu, 2012, Length-dependent thermal conductivity of single extended polymer chains, Phys. Rev. B, 86, 104307, 10.1103/PhysRevB.86.104307

Zhang, 2012, Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers, J. Appl. Phys., 112, 094304, 10.1063/1.4759293

Pettes, 2009, Thermal and structural characterizations of individual single, double, and multi-walled carbon nanotubes, Adv. Funct. Mater., 19, 3918, 10.1002/adfm.200900932

Utracki, 2002

Steiner, 2002, The hydrogen bond in the solid state, Angew. Chem. Int. Ed., 41, 48, 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U

Kurabayashi, 1999, Measurement of the thermal conductivity anisotropy in polyimide films, J. Microelectromech. Syst., 8, 180, 10.1109/84.767114

Luo, 2013, Nanoscale heat transfer – from computation to experiment, PCCP, 15, 3389, 10.1039/c2cp43771f

Losego, 2012, Effects of chemical bonding on heat transport across interfaces, Nat. Mater., 11, 502, 10.1038/nmat3303

Saechtling, 1987

Mark, 2007

Mark, 1985

Thompson, 1985

Mark, 1989

Brandrup, 1989

Rader, 1978

Gold-Smith, 1961

T’Joen, 2009, A review on polymer heat exchangers for HVAC&R applications, Int. J. Refrig., 32, 763, 10.1016/j.ijrefrig.2008.11.008

1992

Chen, 1977, Thermal diffusivity of polymers by the flash method, Polymer, 18, 129, 10.1016/0032-3861(77)90027-1

Chen, 2017, Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability, Adv. Funct. Mater., 27, 1604754, 10.1002/adfm.201604754

1970, Thermal conductivity, nonmetallic solid

Sheldon, 1982, Composite polymeric materials, Appl. Sci.

1987

Hong, 2012, Thermal properties of poly(dimethyl siloxane) nanocomposite filled with silicon carbide and multiwall carbon nanotubes, Polym. Int., 61, 639, 10.1002/pi.3224

Hong, 2010, Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites, Curr. Appl Phys., 10, 359, 10.1016/j.cap.2009.06.028

Jamieson D.T., 1976, Thermal conductivity of silicone oils of the polymethylphenyl siloxane type, vol. 14

Barker, 1977, Influence of pressure and chemical structure on the thermal conductivity of vitreous poly(alkyl methacrylates), I. J. Polym. Sci. Polym. Phys. Ed., 15, 1199, 10.1002/pol.1977.180150706

Kim, 2011, Modeling and design of transdermal drug delivery patches containing an external heating device, Comput. Chem. Eng., 35, 1152, 10.1016/j.compchemeng.2011.01.006

Pattanayak, 1990, Thermal characteristics of poly(ethylene vinyl acetate) from 80 to 300K, Cryogenics, 30, 795, 10.1016/0011-2275(90)90277-J

Terao, 2009, Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes, J. Phys. Chem. C, 113, 13605, 10.1021/jp903159s

Maxwell, 1954

Nan, 1997, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys., 81, 6692, 10.1063/1.365209

Nan, 2004, Interface effect on thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 85, 3549, 10.1063/1.1808874

Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4

Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, Ind. Eng. Chem. Fundam., 1, 187, 10.1021/i160003a005

Zeng, 1995, Geometric structure and thermal conductivity of porous medium silica aerogel, J. Heat Transfer, 117, 1055, 10.1115/1.2836281

Woodside, 1961, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys., 32, 1688, 10.1063/1.1728419

Cheng, 1969, The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures, Int. J. Heat Mass Transfer, 12, 249, 10.1016/0017-9310(69)90009-X

Okamoto, 1999, A new theoretical equation for thermal conductivity of two-phase systems, J. Appl. Polym. Sci., 72, 1689, 10.1002/(SICI)1097-4628(19990624)72:13<1689::AID-APP5>3.0.CO;2-D

Progelhof, 1976, Methods for predicting the thermal conductivity of composite systems: a review, Polym. Eng. Sci., 16, 615, 10.1002/pen.760160905

Nielsen, 1974, The thermal and electrical conductivity of two-phase systems, Ind. Eng. Chem. Fundam., 13, 17, 10.1021/i160049a004

Agari, 1993, Thermal conductivity of a polymer composite, J. Appl. Polym. Sci., 49, 1625, 10.1002/app.1993.070490914

Uno, 1986, Estimation on thermal conductivities of filled polymers, J. Appl. Polym. Sci., 32, 5705, 10.1002/app.1986.070320702

Bruggeman, 1935, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys., 416, 636, 10.1002/andp.19354160705

Meredith, 1962

Lewis, 1970, Dynamic mechanical of particulate-filler composites, J. Appl. Polym. Sci., 14, 1449, 10.1002/app.1970.070140604

Cheng, 1970, A technique for predicting the thermal conductivity of suspensions, emulsions and porous materials, Int. J. Heat Mass Transfer, 13, 537, 10.1016/0017-9310(70)90149-3

He, 2007, High thermal conductive Si3N4 particle filled epoxy composites with a novel structure, J. Electron. Packag., 129, 469, 10.1115/1.2804097

He, 2007, Preparation and properties of Si3N4/PS composites used for electronic packaging, Compos. Sci. Technol., 67, 2493, 10.1016/j.compscitech.2006.12.014

Gu, 2017, Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities, Composites Part A, 92, 27, 10.1016/j.compositesa.2016.11.002

Gu, 2017, Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in-situ polymerization-electrospinning-hot press method, Composites Part A, 94, 209, 10.1016/j.compositesa.2016.12.014

Wagner, 2004, Nanocomposites: issues at the interface, Mater. Today, 7, 38, 10.1016/S1369-7021(04)00507-3

Kochetov, 2011, Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix, J. Phys. D: Appl. Phys., 44, 395401, 10.1088/0022-3727/44/39/395401

Li, 2018, The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy, Nanoscale, 10, 1695, 10.1039/C7NR06780A

Mu, 2017, Molecular origin of efficient phonon transfer in modulated polymer blends: effect of hydrogen bonding on polymer coil size and assembled microstructure, J. Phys. Chem. C, 121, 14204, 10.1021/acs.jpcc.7b03726

Mu, 2017, Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals, ACS Appl. Mater. Interfaces, 9, 12138, 10.1021/acsami.7b02257

Xu, 2000, Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments, Compos. Interfaces, 7, 243, 10.1163/156855400750244969

Guo, 2018, Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology, J. Mater. Chem. C

Kakade, 2007, Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers, J. Am. Chem. Soc., 129, 2777, 10.1021/ja065043f

Oliva-Avilés, 2011, Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field, Carbon, 49, 2989, 10.1016/j.carbon.2011.03.017

Gaska, 2015, Magnetic-aligned, magnetite-filled epoxy composites with enhanced thermal conductivity, J. Mater. Sci., 50, 2510, 10.1007/s10853-014-8809-8

Yuan, 2015, Thermal conductivity of polymer-based composites with magnetic aligned hexagonal boron nitride platelets, ACS Appl. Mater. Interfaces, 7, 13000, 10.1021/acsami.5b03007

Kim, 2016, Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field, Int. J. Therm. Sci., 100, 29, 10.1016/j.ijthermalsci.2015.09.013

Lim, 2013, Anisotropically alignable magnetic boron nitride platelets decorated with iron oxide nanoparticles, Chem. Mater., 25, 3315, 10.1021/cm401488a

Lin, 2013, Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation, ACS Appl. Mater. Interfaces, 5, 7633, 10.1021/am401939z

Pan, 2017, Learning from natural nacre: constructing layered polymer composites with high thermal conductivity, ACS Appl. Mater. Interfaces, 9, 33001, 10.1021/acsami.7b10115

Sun, 2015, Multi-gating injection molding to enhance the thermal conductivity of carbon fiber/polysulfone composite, Polym. Compos., 38, 185, 10.1002/pc.23574

Colonna, 2017, Effect of processing conditions on the thermal and electrical conductivity of poly (butylene terephthalate) nanocomposites prepared via ring-opening polymerization, Mater Design, 119, 124, 10.1016/j.matdes.2017.01.067

Akil, 2006, Effect of various coupling agents on properties of alumina-filled PP composites, J. Reinf. Plast. Compos., 25, 745, 10.1177/0731684406062068

Shokoohi, 2008, Silane coupling agents in polymer-based reinforced composites: a review, J. Reinf. Plast. Compos., 27, 473, 10.1177/0731684407081391

Lee, 2008, Improved dispersion of aluminum nitride particles in epoxy resin by adsorption of two-layer surfactants, Colloids Surf. A, 316, 95, 10.1016/j.colsurfa.2007.08.045

Li, 2018, Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers, Composites Part A, 107, 570, 10.1016/j.compositesa.2018.02.006

Gu, 2017, Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities, Compos. Sci. Technol., 139, 83, 10.1016/j.compscitech.2016.12.015

Yung, 2007, Enhanced thermal conductivity of boron nitride epoxy-matrix composite through multi-modal particle size mixing, J. Appl. Polym. Sci., 106, 3587, 10.1002/app.27027

Zhou, 2008, Thermal properties of heat conductive silicone rubber filled with hybrid fillers, J. Compos. Mater., 42, 173, 10.1177/0021998307086184

Boudenne, 2005, Electrical and thermal behavior of polypropylene filled with copper particles, Composites Part A, 36, 1545, 10.1016/j.compositesa.2005.02.005

Lee, 2006, Enhanced thermal conductivity of polymer composites filled with hybrid filler, Composites Part A, 37, 727, 10.1016/j.compositesa.2005.07.006

Zhou, 2008, Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber, Polym. Eng. Sci., 48, 1381, 10.1002/pen.21113

Sofian, 2001, Metal powder-filled polyethylene composites. V. Thermal properties, J. Thermoplast. Compos. Mater., 14, 20, 10.1106/9N6K-VKH1-MHYX-FBC4

Wen, 2003, Thermal, electrical, and mechanical properties of composite polymer electrolytes based on cross-linked poly(ethylene oxide-co-propylene oxide) and ceramic filler, Solid State Ionics, 160, 141, 10.1016/S0167-2738(03)00129-2

Burger, 2016, Review of thermal conductivity in composites: mechanisms, parameters and theory, Prog. Polym. Sci., 61, 1, 10.1016/j.progpolymsci.2016.05.001

Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci., 59, 41, 10.1016/j.progpolymsci.2016.03.001

Sain, 2013, Thermal and electronic behaviour of polycarbonate–copper nanocomposite system, J. Phys. D: Appl. Phys., 46, 455501, 10.1088/0022-3727/46/45/455501

Kumlutaş, 2003, Thermal conductivity of particle filled polyethylene composite materials, Compos. Sci. Technol., 63, 113, 10.1016/S0266-3538(02)00194-X

Tekce, 2007, Effect of particle shape on thermal conductivity of copper reinforced polymer composites, J. Reinf. Plast. Compos., 26, 113, 10.1177/0731684407072522

Mamunya, 2002, Electrical and thermal conductivity of polymers filled with metal powders, Eur. Polym. J., 38, 1887, 10.1016/S0014-3057(02)00064-2

Fu, 2014, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng., 66, 493, 10.1016/j.applthermaleng.2014.02.044

Bartlett, 2017, High thermal conductivity in soft elastomers with elongated liquid metal inclusions, Proc. Natl. Acad. Sci. U.S.A., 114, 2143, 10.1073/pnas.1616377114

Yu, 2014, RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites, ACS Appl. Mater. Interfaces, 6, 7498, 10.1021/am500871b

Tian, 2013, Anisotropic thermal and electrical properties of thin thermal interface layers of graphite nanoplatelet-based composites, Sci. Rep., 3, 1710, 10.1038/srep01710

Rai, 2017, Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites, Compos. Sci. Technol., 144, 70, 10.1016/j.compscitech.2017.03.020

Kim, 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, 215502, 10.1103/PhysRevLett.87.215502

Lee, 2015, Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100K, Nat. Commun., 6, 8573, 10.1038/ncomms9573

Jang, 2015, Anisotropic thermal conductivity of exfoliated black phosphorus, Adv. Mater., 27, 8017, 10.1002/adma.201503466

Luo, 2015, Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus, Nat. Commun., 6, 8572, 10.1038/ncomms9572

Pop, 2006, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6, 96, 10.1021/nl052145f

Hone, 1999, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B, 59, R2514, 10.1103/PhysRevB.59.R2514

Yu, 2005, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett., 5, 1842, 10.1021/nl051044e

Fujii, 2005, Measuring the thermal conductivity of a single carbon nanotube, Phys. Rev. Lett., 95, 065502, 10.1103/PhysRevLett.95.065502

Wong, 1999, Comparative study of thermally conductive fillers for use in liquid encapsulants for electronic packaging, IEEE Trans. Adv. Packag., 22, 54, 10.1109/6040.746543

Zeng, 2009, High thermal conductive epoxy molding compound with thermal conductive pathway, J. Appl. Polym. Sci., 113, 2117, 10.1002/app.30045

Buhr, 1991, Phase composition, oxygen content, and thermal conductivity of AIN(Y2O3) ceramics, J. Am. Ceram. Soc., 74, 718, 10.1111/j.1151-2916.1991.tb06914.x

Fugallo, 2014, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano Lett., 14, 6109, 10.1021/nl502059f

Cho Yen Ho, 1974, Thermal conductivity of the elements: a comprehensive review, J. Phys. Chem. Ref. Data, 3, 756

Balandin, 2008, Superior thermal conductivity of single-layer graphene, Nano Lett., 8, 902, 10.1021/nl0731872

Yan, 2014, Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy, ACS Nano, 8, 986, 10.1021/nn405826k

Seshadri, 2015, Multifold increases in thermal conductivity of polymer nanocomposites through microwave welding of metal nanowire fillers, Adv. Mater. Interfaces, 2, 1500186, 10.1002/admi.201500186

Garnett, 2012, Self-limited plasmonic welding of silver nanowire junctions, Nat. Mater., 11, 241, 10.1038/nmat3238

Chou, 2005, Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method, Nanotechnology, 16, 779, 10.1088/0957-4484/16/6/027

Lu, 2010, Cold welding of ultrathin gold nanowires, Nat. Nanotechnol., 5, 218, 10.1038/nnano.2010.4

Balachander, 2013, Nanowire-filled polymer composites with ultrahigh thermal conductivity, Appl. Phys. Lett., 102, 10.1063/1.4793419

Song, 2014, Nanoscale Joule heating and electromigration enhanced ripening of silver nanowire contacts, ACS Nano, 8, 2804, 10.1021/nn4065567

Rybakov, 2006, Microwave heating of conductive powder materials, J. Appl. Phys., 99, 023506, 10.1063/1.2159078

Perelaer, 2006, Ink-jet printing and microwave sintering of conductive silver tracks, Adv. Mater., 18, 2101, 10.1002/adma.200502422

Kogan, 2006, Nanoparticle-mediated local and remote manipulation of protein aggregation, Nano Lett., 6, 110, 10.1021/nl0516862

Cao, 2009, Microwave heating behavior of nanocrystalline Au thin films in single-mode cavity, J. Mater. Res., 24, 268, 10.1557/JMR.2009.0030

Sourour, 1976, Differential scanning calorimetry of epoxy cure – isothermal cure kinetics, Thermochim. Acta, 14, 41, 10.1016/0040-6031(76)80056-1

Xia, 1998, Soft lithography, Annu. Rev. Mater. Sci., 28, 153, 10.1146/annurev.matsci.28.1.153

Pashayi, 2014, Self-constructed tree-shape high thermal conductivity nanosilver networks in epoxy, Nanoscale, 6, 4292, 10.1039/C3NR06494H

Raman, 2008, Boron nitride finds new applications in thermoplastic compounds, Plast. Addit. Compd., 10, 26, 10.1016/S1464-391X(08)70092-8

Zhou, 2009, Thermal, dielectric, and mechanical properties of SiC particles filled linear low-density polyethylene composites, J. Appl. Polym. Sci., 112, 1695, 10.1002/app.29602

Kim, 2006, Thermal conductivity and adhesion properties of thermally conductive pressure-sensitive adhesives, Macromol. Res., 14, 517, 10.1007/BF03218718

Zhou, 2009, A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity, Composites Part A, 40, 830, 10.1016/j.compositesa.2009.04.005

Subodh, 2008, Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites, J. Appl. Polym. Sci., 108, 1716, 10.1002/app.27606

Varghese, 2015, Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications, PCCP, 17, 14943, 10.1039/C5CP01242B

Yu, 2015, Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets, Polym. Compos.

Zhou, 2008, Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites, Polymer, 49, 4666, 10.1016/j.polymer.2008.08.023

Yang, 2010, Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine-functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide, Composites Part A, 41, 215, 10.1016/j.compositesa.2009.10.019

Gu, 2016, Fabrication of modified bismaleimide resins by hyperbranched phenyl polysiloxane and improvement of their thermal conductivities, RSC Adv., 6, 57357, 10.1039/C6RA10397A

Garrett, 1974, The thermal conductivity of epoxy-resin /powder composite materials, J. Phys. D: Appl. Phys., 7, 1247, 10.1088/0022-3727/7/9/311

Bujard, 1994, Thermal conductivity of molding compounds for packaging, IEEE Trans. Compon. Packag. Manuf. Technol. Part A, 17, 527, 10.1109/95.335037

Anjana, 2010, Dielectric, thermal, and mechanical properties of CeO2-filled HDPE composites for microwave substrate applications, J. Polym. Sci., Part B: Polym. Phys., 48, 998, 10.1002/polb.21988

Gu, 2017, Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity, IEEE Trans. Dielectr. Electr. Insul., 24, 784, 10.1109/TDEI.2017.006299

Yang, 2017, Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers, Composites Part A, 101, 237, 10.1016/j.compositesa.2017.06.005

Gu, 2016, Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride, RSC Adv., 6, 35809, 10.1039/C6RA04513H

Pezzotti, 2000, Thermal conductivity of AlN/polystyrene interpenetrating networks, J. Eur. Ceram. Soc., 20, 1197, 10.1016/S0955-2219(99)00282-4

Ohashi, 2005, Spherical aluminum nitride fillers for heat-conducting plastic packages, J. Am. Ceram. Soc., 88, 2615, 10.1111/j.1551-2916.2005.00456.x

Lee, 2008, Enhanced thermal conductivity of polymer matrix composite via high solids loading of aluminum nitride in epoxy resin, J. Am. Ceram. Soc., 91, 1169, 10.1111/j.1551-2916.2008.02247.x

Ng, 2005, Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions, Polym. Compos., 26, 778, 10.1002/pc.20151

Xie, 2004, Preparation and properties of polyimide/aluminum nitride composites, Polym. Test., 23, 797, 10.1016/j.polymertesting.2004.03.005

Wang, 2009, Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using beta-aluminum nitride, Appl. Energy, 86, 1196, 10.1016/j.apenergy.2008.10.020

Sim, 2005, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim. Acta, 430, 155, 10.1016/j.tca.2004.12.024

Lu, 1998, Moisture – absorption, dielectric relaxation, and thermal conductivity studies of polymer composites, J. Polym. Sci., Part B: Polym. Phys., 36, 2259, 10.1002/(SICI)1099-0488(19980930)36:13<2259::AID-POLB2>3.0.CO;2-O

Shimazaki, 2009, Highly thermoconductive polymer nanocomposite with a nanoporous alpha-alumina sheet, ACS Appl. Mater. Interfaces, 1, 225, 10.1021/am800055s

Shimazaki, 2008, Preparation and characterization of thermoconductive polymer nanocomposite with branched alumina nanofiber, Appl. Phys. Lett., 92, 133309, 10.1063/1.2907315

Mu, 2007, Thermal conductivity of silicone rubber filled with ZnO, Polym. Compos., 28, 125, 10.1002/pc.20276

Mu, 2007, Thermal conductivity of graphite/silicone rubber prepared by solution intercalation, Thermochim. Acta, 462, 70, 10.1016/j.tca.2007.06.006

Ganguli, 2008, Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites, Carbon, 46, 806, 10.1016/j.carbon.2008.02.008

Nika, 2009, Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering, Phys. Rev. B, 79, 155413, 10.1103/PhysRevB.79.155413

Gu, 2016, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity, Int. J. Heat Mass Transfer, 92, 15, 10.1016/j.ijheatmasstransfer.2015.08.081

Allen, 2010, Honeycomb carbon: a review of graphene, Chem. Rev., 110, 132, 10.1021/cr900070d

Shen, 2014, Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding, Adv. Funct. Mater., 24, 4542, 10.1002/adfm.201400079

Stankovich, 2006, Graphene-based composite materials, Nature, 442, 282, 10.1038/nature04969

Xu, 2014, Length-dependent thermal conductivity in suspended single-layer graphene, Nat. Commun., 5, 3689, 10.1038/ncomms4689

Kroto, 1985, C60: Buckminsterfullerene, Nature, 318, 162, 10.1038/318162a0

Yi, 2015, Preparation and characterization of large diameter pitch based carbon fiber/ABS resin composites with high thermal conductivities, New Carbon Mater., 30, 63

Chang, 2009

Yang, 2009, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon, 47, 1723, 10.1016/j.carbon.2009.02.029

Hong, 2008, Investigations on the thermal conductivity of composites reinforced with carbon nanotubes, Diamond Relat. Mater., 17, 1577, 10.1016/j.diamond.2008.03.037

Gojny, 2006, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, 47, 2036, 10.1016/j.polymer.2006.01.029

Chatterjee, 2002, Carbon nanotubes and nanofibre: an overview, Fibers Polym., 3, 134, 10.1007/BF02912657

Moniruzzaman, 2006, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39, 5194, 10.1021/ma060733p

Agarwal, 2008, Thermal conductivity of polymer nanocomposites made with carbon nanofibers, Polym. Eng. Sci., 48, 2474, 10.1002/pen.21205

Zhang, 2009, Rheology and thermal conductivity of diamond powder-filled liquid epoxy encapsulants for electronic packaging, IEEE Trans. Compon. Packag. Technol., 32, 716, 10.1109/TCAPT.2009.2029701

Garrett, 1974, Thermal conductivity of epoxy resin powder composite materials, J. Phys. D: Appl. Phys., 7, 1247, 10.1088/0022-3727/7/9/311

Song, 2017, Significant enhancement of thermal conductivity in nanofibrillated cellulose films with low mass fraction of nanodiamond, ACS Appl. Mater. Interfaces, 9, 40766, 10.1021/acsami.7b09240

Yu, 2013, Enhanced thermal conductivity for PVDF composites with a hybrid functionalized graphene sheet-nanodiamond filler, Fibers Polym., 14, 1317, 10.1007/s12221-013-1317-7

Wong, 2001, Electrical and thermal properties of composite of liquid crystalline polymer filled with carbon black, J. Appl. Polym. Sci., 82, 1549, 10.1002/app.1993

Tibbetts, 2007, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Compos. Sci. Technol., 67, 1709, 10.1016/j.compscitech.2006.06.015

Ghosh, 2008, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett., 92, 15, 10.1063/1.2907977

Marconnet, 2011, Thermal conduction in aligned carbon nanotube–polymer nanocomposites with high packing density, ACS Nano, 5, 4818, 10.1021/nn200847u

Berber, 2000, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett., 84, 4613, 10.1103/PhysRevLett.84.4613

Nan, 2003, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett., 375, 666, 10.1016/S0009-2614(03)00956-4

Cai, 2008, Latex technology as a simple route to improve the thermal conductivity of a carbon nanotube/polymer composite, Carbon, 46, 2107, 10.1016/j.carbon.2008.09.001

Peters, 2008, Unique thermal conductivity behavior of single-walled carbon nanotube−polystyrene composites, Macromolecules, 41, 7274, 10.1021/ma8011569

Huxtable, 2003, Interfacial heat flow in carbon nanotube suspensions, Nat. Mater., 2, 731, 10.1038/nmat996

Gu, 2015, Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique, Composites Part A, 79, 8, 10.1016/j.compositesa.2015.09.005

Gu, 2015, Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities, Composites Part A, 78, 95, 10.1016/j.compositesa.2015.08.004

Yu, 2016, Enhanced thermal conductive property of epoxy composites by low mass fraction of organic–inorganic multilayer covalently grafted carbon nanotubes, Compos. Sci. Technol., 125, 90, 10.1016/j.compscitech.2016.01.005

Jang, 2008, Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review, J. Mater. Sci., 43, 5092, 10.1007/s10853-008-2755-2

Debelak, 2007, Use of exfoliated graphite filler to enhance polymer physical properties, Carbon, 45, 1727, 10.1016/j.carbon.2007.05.010

Kalaitzidou, 2007, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets, Carbon, 45, 1446, 10.1016/j.carbon.2007.03.029

Liu, 2008, Graphite blocks with high thermal conductivity derived from natural graphite flake, Carbon, 46, 414, 10.1016/j.carbon.2007.11.050

Wang, 2009, Thermal expansion of graphene composites, Macromolecules, 42, 5251, 10.1021/ma900631c

Ramanathan, 2008, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol., 3, 327, 10.1038/nnano.2008.96

Ansari, 2009, Functionalized graphene sheet-poly(vinylidene fluoride) conductive nanocomposites, J. Polym. Sci., Part B: Polym. Phys., 47, 888, 10.1002/polb.21695

Veca, 2009, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity, Adv. Mater., 21, 2088, 10.1002/adma.200802317

Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064

Hirsch, 2010, The era of carbon allotropes, Nat. Mater., 9, 868, 10.1038/nmat2885

Yao, 2014, Effects of nanosized constriction on thermal transport properties of graphene, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-408

Soldano, 2010, Production, properties and potential of graphene, Carbon, 48, 2127, 10.1016/j.carbon.2010.01.058

Geim, 2008, Carbon wonderland, Sci. Am., 298, 90, 10.1038/scientificamerican0408-90

Pop, 2012, Thermal properties of graphene: fundamentals and applications, MRS Bull., 37, 1273, 10.1557/mrs.2012.203

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896

Ghosh, 2008, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett., 92, 151911, 10.1063/1.2907977

Yu, 2008, Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites, Adv. Mater., 20, 4740, 10.1002/adma.200800401

Bryning, 2005, Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites, Appl. Phys. Lett., 87, 161909, 10.1063/1.2103398

Biercuk, 2002, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80, 2767, 10.1063/1.1469696

Du, 2006, An infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity, J. Polym. Sci., Part B: Polym. Phys., 44, 1513, 10.1002/polb.20801

Fukushima, 2006, Thermal conductivity of exfoliated graphite nanocomposites, J. Therm. Anal. Calorim., 85, 235, 10.1007/s10973-005-7344-x

Zhang, 2015, Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers, J. Therm. Anal. Calorim., 123, 431, 10.1007/s10973-015-4903-7

Liu, 2005, Effects of chemical modifications on the thermal conductivity of carbon nanotube composites, Appl. Phys. Lett., 86, 123106, 10.1063/1.1887839

Huang, 2005, Aligned carbon nanotube composite films for thermal management, Adv. Mater., 17, 10.1002/adma.200500467

Liu, 2004, Thermal conductivity improvement of silicone elastomer with carbon nanotube loading, Appl. Phys. Lett., 84, 4248, 10.1063/1.1756680

Song, 2006, Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes, Appl. Phys. Lett., 88, 153111, 10.1063/1.2194267

Weber, 2003, Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling, J. Appl. Polym. Sci., 88, 123, 10.1002/app.11572

Weber, 2003, Thermally conductive nylon 6,6 and polycarbonate based resins. I. Synergistic effects of carbon fillers, J. Appl. Polym. Sci., 88, 112, 10.1002/app.11571

Li, 2010, Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride, J. Phys. Chem. B, 114, 6825, 10.1021/jp101857w

Varenik, 2017, Breaking through the solid/liquid processability barrier: thermal conductivity and rheology in hybrid graphene–graphite polymer composites, ACS Appl. Mater. Interfaces, 9, 7556, 10.1021/acsami.6b14568

Gu, 2017, Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers, Composites Part A, 95, 267, 10.1016/j.compositesa.2017.01.019

Ramirez, 2017, Thermal and magnetic properties of nanostructured densified ferrimagnetic composites with graphene – graphite fillers, Mater. Design, 118, 75, 10.1016/j.matdes.2017.01.018

Zhang, 2014, Thermal contact resistance of epoxy composites incorporated with nano-copper particles and the multi-walled carbon nanotubes, Composites Part A, 57, 1, 10.1016/j.compositesa.2013.10.022

Yang, 2011, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49, 793, 10.1016/j.carbon.2010.10.014

Kong, 2014, Enhanced conductivity behavior of polydimethylsiloxane (PDMS) hybrid composites containing exfoliated graphite nanoplatelets and carbon nanotubes, Composites Part B, 58, 457, 10.1016/j.compositesb.2013.10.039

Zhang, 2016, Improved thermal conductivity of polycarbonate composites filled with hybrid exfoliated graphite/multi-walled carbon nanotube fillers, J. Therm. Anal. Calorim., 123, 431, 10.1007/s10973-015-4903-7

Yan, 2014, Enhanced thermal–mechanical properties of polymer composites with hybrid boron nitride nanofillers, Appl. Phys. A, 114, 331, 10.1007/s00339-013-8149-6

Simmons, 2009, Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites, ACS Nano, 3, 865, 10.1021/nn800860m

Kim, 2016, Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement, Compos. Sci. Technol., 123, 99, 10.1016/j.compscitech.2015.12.004

Yang, 2011, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites, Carbon, 49, 793, 10.1016/j.carbon.2010.10.014

Shtein, 2015, Graphene-based hybrid composites for efficient thermal management of electronic devices, ACS Appl. Mater. Interfaces, 7, 23725, 10.1021/acsami.5b07866

Zhang, 2018, Achieving high-efficiency and robust 3D thermally conductive while electrically insulating hybrid filler network with high orientation and ordered distribution, Chem. Eng. J., 334, 247, 10.1016/j.cej.2017.10.037

McCullen, 2007, Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes, Macromolecules, 40, 997, 10.1021/ma061735c

Zhao, 2006, Facile preparation of epoxy-based composite with oriented graphite nanosheets, Polymer, 47, 8401, 10.1016/j.polymer.2006.09.025

Yan, 2014, Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets, J. Mater. Sci., 49, 5256, 10.1007/s10853-014-8198-z

Weidenfeller, 2002, Thermal and electrical properties of magnetite filled polymers, Composites Part A, 33, 1041, 10.1016/S1359-835X(02)00085-4

Sommer, 2012, Injectable materials with magnetically controlled anisotropic porosity, ACS Appl. Mater. Interfaces, 4, 5086, 10.1021/am301500z

Porter, 2012, Magnetic freeze casting inspired by nature, Mater. Sci. Eng. A, 556, 741, 10.1016/j.msea.2012.07.058

Libanori, 2013, Mechanics of platelet-reinforced composites assembled using mechanical and magnetic stimuli, ACS Appl. Mater. Interfaces, 5, 10794, 10.1021/am402975a

Kimura, 2002, Polymer composites of carbon nanotubes aligned by a magnetic field, Adv. Mater., 14, 1380, 10.1002/1521-4095(20021002)14:19<1380::AID-ADMA1380>3.0.CO;2-V

Kim, 2011, Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices, Carbon, 49, 54, 10.1016/j.carbon.2010.08.041

Erb, 2013, Self-shaping composites with programmable bioinspired microstructures, Nat. Commun., 4, 1712, 10.1038/ncomms2666

Erb, 2012, Composites reinforced in three dimensions by using low magnetic fields, Science, 335, 199, 10.1126/science.1210822

Camponeschi, 2007, Properties of carbon nanotube–polymer composites aligned in a magnetic field, Carbon, 45, 2037, 10.1016/j.carbon.2007.05.024

Abdalla, 2010, Magnetically processed carbon nanotube/epoxy nanocomposites: morphology, thermal, and mechanical properties, Polymer, 51, 1614, 10.1016/j.polymer.2009.05.059

Xu, 2016, Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance, J. Mater. Chem. C, 4, 872, 10.1039/C5TC03791C

Uetani, 2014, Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking, Adv. Mater., 26, 5857, 10.1002/adma.201401736

Libanori, 2012, Hierarchical reinforcement of polyurethane-based composites with inorganic micro- and nanoplatelets, Compos. Sci. Technol., 72, 435, 10.1016/j.compscitech.2011.12.005

Munch, 2008, Tough, bio-inspired hybrid materials, Science, 322, 1516, 10.1126/science.1164865

Erb, 2009, Magnetic assembly of colloidal superstructures with multipole symmetry, Nature, 457, 999, 10.1038/nature07766

Tanimoto, 2013, Anisotropic thermal diffusivity of hexagonal boron nitride-filled polyimide films: effects of filler particle size, aggregation, orientation, and polymer chain rigidity, ACS Appl. Mater. Interfaces, 5, 4374, 10.1021/am400615z

Sato, 2010, Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces, J. Mater. Chem., 20, 2749, 10.1039/b924997d

Zeng, 2015, Ice-templated assembly strategy to construct 3D boron nitride nanosheet networks in polymer composites for thermal conductivity improvement, Small, 11, 6205, 10.1002/smll.201502173

Rybak, 2015, Functional composites with core–shell fillers: I. Particle synthesis and thermal conductivity measurements, J. Mater. Sci., 50, 7779, 10.1007/s10853-015-9349-6

Huang, 2015, Spherical and flake-like BN filled epoxy composites: morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties, J. Mater. Sci. Mater. Electron., 26, 3564, 10.1007/s10854-015-2870-1

Tsekmes, 2014, Modeling the thermal conductivity of polymeric composites based on experimental observations, IEEE Trans. Dielectr. Electr. Insul., 21, 412, 10.1109/TDEI.2013.004142

Kumlutas, 2006, A numerical and experimental study on thermal conductivity of particle filled polymer composites, J. Thermoplast. Compos. Mater., 19, 441, 10.1177/0892705706062203

Yu, 2015, Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina, Int. J. Therm. Sci., 91, 76, 10.1016/j.ijthermalsci.2015.01.006

Wang, 2004, Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites, Compos. Sci. Technol., 64, 1623, 10.1016/j.compscitech.2003.11.007

Yu, 2008, Thermal and dielectric properties of fiber reinforced polystyrene composites, Polym. Compos., 29, 1199, 10.1002/pc.20527

Droval, 2006, Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites, Polym. Adv. Technol., 17, 732, 10.1002/pat.777

Bai, 2017, Dispersion and network formation of graphene platelets in polystyrene composites and the resultant conductive properties, Composites Part A, 96, 89, 10.1016/j.compositesa.2017.02.020

Song, 2014, Thermally reduced graphene oxide films as flexible lateral heat spreaders, J. Mater. Chem. A, 2, 16563, 10.1039/C4TA02693D

Shtein, 2015, Thermally conductive graphene–polymer composites: size, percolation, and synergy effects, Chem. Mater., 27, 2100, 10.1021/cm504550e

Yu, 2018, Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50Wm−1K−1, Compos. Sci. Technol., 160, 199, 10.1016/j.compscitech.2018.03.028

Ren, 2016, The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN+MWCNT) hybrid composites with segregated structure, Composites Part A, 90, 13, 10.1016/j.compositesa.2016.06.019

Colonna, 2016, Effect of morphology and defectiveness of graphene-related materials on the electrical and thermal conductivity of their polymer nanocomposites, Polymer, 102, 292, 10.1016/j.polymer.2016.09.032

Patti, 2017, Influence of filler dispersion and interfacial resistance on thermal conductivity of polypropylene/carbon nanotubes systems, AIP Conf. Proc., 1914, 030014, 10.1063/1.5016701

Ng Hsiao, 2005, Thermal conductivity of boron nitride-filled thermoplastics: effect of filler characteristics and composite processing conditions, Polym. Compos., 26, 778, 10.1002/pc.20151

Papkov, 2013, Simultaneously strong and tough ultrafine continuous nanofibers, ACS Nano, 7, 3324, 10.1021/nn400028p

Prasher, 2006, Thermal interface materials: historical perspective, status, and future directions, Proc. IEEE, 94, 1571, 10.1109/JPROC.2006.879796

Wang, 2007, Ultrafast flash thermal conductance of molecular chains, Science, 317, 787, 10.1126/science.1145220

Calhorda, 2000, Weak hydrogen bonds: theoretical studies, Chem. Commun., 801, 10.1039/a900221i

Xie, 2017, High and low thermal conductivity of amorphous macromolecules, Phys. Rev. B, 95, 035406, 10.1103/PhysRevB.95.035406

Mu, 2016, Paving the thermal highway with self-organized nanocrystals in transparent polymer composites, ACS Appl. Mater. Interfaces, 8, 29080, 10.1021/acsami.6b10451

Mehra, 2017, Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system, Compos. Sci. Technol., 148, 97, 10.1016/j.compscitech.2017.05.017

Mehra, 2017, Moisture driven thermal conduction in polymer and polymer blends, Compos. Sci. Technol., 151, 115, 10.1016/j.compscitech.2017.08.010

Norris, 2013, Tuning phonon transport: from interfaces to nanostructures, J. Heat Transfer, 135, 061604, 10.1115/1.4023584

Shenogin, 2004, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites, J. Appl. Phys., 95, 8136, 10.1063/1.1736328

Persson, 2011, Phononic heat transfer across an interface: thermal boundary resistance, J. Phys.: Condens. Matter, 23, 045009

Kashfipour, 2018, A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites, Adv. Compos. Hybrid Mater., 10.1007/s42114-018-0022-9

Tavman, 2000, Transverse thermal conductivity of fiber reinforced polymer composites, Int. Commun. Heat Mass Transfer, 27, 253, 10.1016/S0735-1933(00)00106-8

Kapitza, 1941, The study of heat transfer in helium II, J. Phys. USSR, 4, 181

Losego, 2010, Interfacial thermal conductance in spun-cast polymer films and polymer brushes, Appl. Phys. Lett., 97, 011908, 10.1063/1.3458802

Hung, 2006, Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites, Appl. Phys. Lett., 89, 023117, 10.1063/1.2221874

Chiritescu, 2007, Ultralow thermal conductivity in disordered, layered WSe2 crystals, Science, 315, 351, 10.1126/science.1136494

Wang, 2016, Highly deformable thermal interface materials enabled by covalently-bonded carbon nanotubes, Carbon, 106, 152, 10.1016/j.carbon.2016.05.017

Loeblein, 2017, High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material, ACS Nano, 11, 2033, 10.1021/acsnano.6b08218

Shahil, 2012, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett., 12, 861, 10.1021/nl203906r

Zhang, 2016, Role of hydrogen bonds in thermal transport across hard/soft material interfaces, ACS Appl. Mater. Interfaces, 8, 33326, 10.1021/acsami.6b12073

Huang, 2012, Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites, J. Phys. Chem. C, 116, 13629, 10.1021/jp3026545

Persson, 2010, Heat transfer between elastic solids with randomly rough surfaces, Eur. Phys. J. E, 31, 3, 10.1140/epje/i2010-10543-1

Bair, 2010, A new acoustic mismatch theory for Kapitsa resistance, J. Phys. A: Math. Theor., 43, 425201, 10.1088/1751-8113/43/42/425201

Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017

Losego, 2013, Thermal transport: breaking through barriers, Nat. Mater., 12, 382, 10.1038/nmat3599

Ong, 2013, Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays, Nat. Mater., 12, 410, 10.1038/nmat3596

Imamura, 2003, Lattice thermal conductivity in superlattices: molecular dynamics calculations with a heat reservoir method, J. Phys.: Condens. Matter, 15, 8679

Chen, 1997, Thermal conductivity and heat transfer in superlattices, Appl. Phys. Lett., 71, 2761, 10.1063/1.120126

Chen, 1998, Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, Phys. Rev. B, 57, 14958, 10.1103/PhysRevB.57.14958

Hopkins, 2007, Effects of joint vibrational states on thermal boundary conductance, Nanoscale Microscale Thermophys. Eng., 11, 247, 10.1080/15567260701715297

Hopkins, 2008, Influence of interfacial mixing on thermal boundary conductance across a chromium/silicon interface, J. Heat Transfer, 130, 062402, 10.1115/1.2897344

Cahill, 2003, Nanoscale thermal transport, J. Appl. Phys., 93, 793, 10.1063/1.1524305

Kosevich, 1995, Fluctuation subharmonic and multiharmonic phonon transmission and Kapitza conductance between crystals with very different vibrational spectra, Phys. Rev. B, 52, 1017, 10.1103/PhysRevB.52.1017

Zeng, 2001, Phonon heat conduction in thin films: impacts of thermal boundary resistance and internal heat generation, J. Heat Transfer, 123, 340, 10.1115/1.1351169

Yang, 2004, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Phys. Rev. B, 69, 195316, 10.1103/PhysRevB.69.195316

Yang, 2003, Partially coherent phonon heat conduction in superlattices, Phys. Rev. B, 67, 195311, 10.1103/PhysRevB.67.195311

Stoner, 1993, Kapitza conductance and heat flow between solids at temperatures from 50 to 300K, Phys. Rev. B, 48, 16373, 10.1103/PhysRevB.48.16373

Stevens, 2005, Measurement of thermal boundary conductance of a series of metal–dielectric interfaces by the transient thermoreflectance technique, J. Heat Transfer, 127, 315, 10.1115/1.1857944

Kozorezov, 1998, Scattering-mediated transmission and reflection of high-frequency phonons at a nonideal solid-solid interface, Phys. Rev. B, 57, 7411, 10.1103/PhysRevB.57.7411

Chen, 2004, Molecular dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires, Physica B, 349, 270, 10.1016/j.physb.2004.03.247

Lyeo, 2006, Thermal conductance of interfaces between highly dissimilar materials, Phys. Rev. B, 73, 144301, 10.1103/PhysRevB.73.144301

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

Hopkins, 2007, Temperature-dependent thermal boundary conductance at Al/Al2O3 and Pt/Al2O3 interfaces, Int. J. Thermophys., 28, 947, 10.1007/s10765-007-0236-5

Hopkins, 2008, Influence of inelastic scattering at metal–dielectric interfaces, J. Heat Transfer, 130, 022401, 10.1115/1.2787025

Stevens, 2007, Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: nonequilibrium molecular dynamics simulations, Int. J. Heat Mass Transfer, 50, 3977, 10.1016/j.ijheatmasstransfer.2007.01.040

Luo, 2010, Non-equilibrium molecular dynamics study of thermal energy transport in Au–SAM–Au junctions, Int. J. Heat Mass Transfer, 53, 1, 10.1016/j.ijheatmasstransfer.2009.10.033

Luo, 2009, Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au–SAM–Au junctions, J. Heat Transfer, 132, 032401, 10.1115/1.4000047

Duda, 2011, Implications of cross-species interactions on the temperature dependence of Kapitza conductance, Phys. Rev. B, 84, 193301, 10.1103/PhysRevB.84.193301

Chen, 1972, Effect of pressure on heat transport in polymers used in dentistry, J. Biomed. Mater. Res., 6, 147, 10.1002/jbm.820060303

Shen, 2011, Bonding and pressure-tunable interfacial thermal conductance, Phys. Rev. B, 84, 195432, 10.1103/PhysRevB.84.195432

Hsieh, 2011, Pressure tuning of the thermal conductance of weak interfaces, Phys. Rev. B, 84, 184107, 10.1103/PhysRevB.84.184107

Malekpour, 2014, Thermal conductivity of graphene laminate, Nano Lett., 14, 5155, 10.1021/nl501996v

Li, 2015, Phonon dynamics at surfaces and interfaces and its implications in energy transport in nanostructured materials—an opinion paper, Nanoscale Microscale Thermophys. Eng., 19, 166, 10.1080/15567265.2015.1035199

Tao, 2007, Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials, IEEE Trans. Compon. Packag. Technol., 30, 92, 10.1109/TCAPT.2007.892079

Xu, 2006, Enhanced thermal contact conductance using carbon nanotube array interfaces, IEEE Trans. Compon. Packag. Technol., 29, 261, 10.1109/TCAPT.2006.875876

Prasher, 2007, Diffraction-limited phonon thermal conductance of nanoconstrictions, Appl. Phys. Lett., 91, 143119, 10.1063/1.2794428

Prasher, 2005, Predicting the thermal resistance of nanosized constrictions, Nano Lett., 5, 2155, 10.1021/nl051710b

Chalopin, 2008, Predominance of thermal contact resistance in a silicon nanowire on a planar substrate, Phys. Rev. B, 77, 233309, 10.1103/PhysRevB.77.233309

Young, 1989, Lattice-dynamical calculation of the Kapitza resistance between fcc lattices, Phys. Rev. B, 40, 3685, 10.1103/PhysRevB.40.3685

Prasher, 2009, Acoustic mismatch model for thermal contact resistance of van der Waals contacts, Appl. Phys. Lett., 94, 041905, 10.1063/1.3075065

Luo, 2012, Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study, Adv. Funct. Mater., 22, 2495, 10.1002/adfm.201103048

Ge, 2004, AuPd metal nanoparticles as probes of nanoscale thermal transport in aqueous solution, J. Phys. Chem. B, 108, 18870, 10.1021/jp048375k

Plech, 2004, Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering, Phys. Rev. B, 70, 195423, 10.1103/PhysRevB.70.195423

Hu, 2009, Kapitza conductance of silicon–amorphous polyethylene interfaces by molecular dynamics simulations, Phys. Rev. B, 79, 104305, 10.1103/PhysRevB.79.104305

Zhou, 2012, Enhanced high thermal conductivity and low permittivity of polyimide based composites by core–shell Ag@SiO2 nanoparticle fillers, Appl. Phys. Lett., 101, 012903, 10.1063/1.4733324

Qian, 2013, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity, RSC Adv., 3, 17373, 10.1039/c3ra42104j

Huang, 2014, Core–shell SiO2@RGO hybrids for epoxy composites with low percolation threshold and enhanced thermo-mechanical properties, J. Mater. Chem. A, 2, 18246, 10.1039/C4TA03702B

Teng, 2011, Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites, Carbon, 49, 5107, 10.1016/j.carbon.2011.06.095

Zhi, 2009, Boron nanotube–polymer composites: towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers, Adv. Funct. Mater., 19, 1857, 10.1002/adfm.200801435

Zhou, 2013, Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles, eXPRESS Polym. Lett., 7, 585, 10.3144/expresspolymlett.2013.56

Kim, 2013, Enhancement of thermal conductive pathway of boron nitride coated polymethylsilsesquioxane composite, J. Nanosci. Nanotechnol., 13, 7695, 10.1166/jnn.2013.7826

Kumar, 2016, Effects of graphene nanopetal outgrowths on internal thermal interface resistance in composites, ACS Appl. Mater. Interfaces, 8, 6678, 10.1021/acsami.5b11796

Roy, 2012, Importance of interfaces in governing thermal transport in composite materials: modeling and experimental perspectives, ACS Appl. Mater. Interfaces, 4, 545, 10.1021/am201496z

Chapelle, 2009, Interfacial thermal resistance measurement between metallic wire and polymer in polymer matrix composites, Int. J. Therm. Sci., 48, 2221, 10.1016/j.ijthermalsci.2009.05.001

Liu, 2014, Polymer/carbon nanotube nano composite fibers – a review, ACS Appl. Mater. Interfaces, 6, 6069, 10.1021/am405136s

Ding, 2003, Direct observation of polymer sheathing in carbon nanotube−polycarbonate composites, Nano Lett., 3, 1593, 10.1021/nl0345973

Barber, 2003, Measurement of carbon nanotube–polymer interfacial strength, Appl. Phys. Lett., 82, 4140, 10.1063/1.1579568

Sandler, 2003, Crystallization of carbon nanotube and nanofiber polypropylene composites, J. Macromol. Sci. B, 42, 479, 10.1081/MB-120021576

Coativy, 2015, Interphase vs confinement in starch–clay bionanocomposites, Carbohydr. Polym., 117, 746, 10.1016/j.carbpol.2014.10.052

Chae, 2006, Oriented and exfoliated single wall carbon nanotubes in polyacrylonitrile, Polymer, 47, 3494, 10.1016/j.polymer.2006.03.050

Kraemer, 2014, A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy, Rev. Sci. Instrum., 85, 025108, 10.1063/1.4865111

ASTM E1530-06, Standard test method for evaluating the resistance to thermal transmission of materials by guarded heat flow meter technique.

ISO 8302:1991, Thermal insulation – determination of steady-state thermal resistance and related properties – guarded hot plate apparatus.

Rides, 2009, Intercomparison of thermal conductivity and thermal diffusivity methods for plastics, Polym. Test., 28, 480, 10.1016/j.polymertesting.2009.03.002

Rajesh, 2003, Conducting polymeric nanotubules as high performance methanol oxidation catalyst support, Chem. Commun., 2022, 10.1039/b305591d

Gustafsson, 1991, Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials, Rev. Sci. Instrum., 62, 797, 10.1063/1.1142087

ISO/DIS 22007-2, Plastics – determination of thermal conductivity and thermal diffusivity – Part 2: transient plane source method.

ISO/DIS 22007-3, Plastics – determination of thermal conductivity and thermal diffusivity – Part 3: temperature wave analysis method.

Morikawa, 1995, Study of change in thermal diffusivity of amorphous polymers during glass transition, Polymer, 36, 4439, 10.1016/0032-3861(95)96850-8

Morikawa, 2008, Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis, J. Appl. Phys., 103, 063522, 10.1063/1.2899181

Hashimoto, 1994

Hay, 2005, Uncertainty of thermal diffusivity measurements by laser flash method, Int. J. Thermophys., 26, 1883, 10.1007/s10765-005-8603-6

ISO/DIS 22007-4, Plastics – determination of thermal conductivity and thermal diffusivity – Part 4: laser flash method.

ASTM D5930-01, Standard test method for thermal conductivity of plastics by means of a transient line-source technique.

Dawson, 2006, The effect of pressure on the thermal conductivity of polymer melts, Polym. Test., 25, 268, 10.1016/j.polymertesting.2005.10.001

Lobo, 1990, Measurement of thermal conductivity of polymer melts by the line-source method, Polym. Eng. Sci., 30, 65, 10.1002/pen.760300202

Gaal, 2004, Thermal conductivity measurements using the flash method, J. Therm. Anal. Calorim., 78, 185, 10.1023/B:JTAN.0000042166.64587.33

dos Santos, 2005, Thermal diffusivity of polymers by the laser flash technique, Polym. Test., 24, 628, 10.1016/j.polymertesting.2005.03.007

Santos dos, 2007, Thermal properties of polymers by non-steady-state techniques, Polym. Test., 26, 556, 10.1016/j.polymertesting.2007.02.005

Merzlyakov, 2001, Thermal conductivity from dynamic response of DSC, Thermochim. Acta, 377, 183, 10.1016/S0040-6031(01)00553-6

Marcus, 1994, Thermal conductivity of polymers, glasses and ceramics by modulated DSC, Thermochim. Acta, 243, 231, 10.1016/0040-6031(94)85058-5

Harris, 2014, Measuring the thermal conductivity of heat transfer fluids via the modified transient plane source (MTPS), J. Therm. Anal. Calorim., 116, 1309, 10.1007/s10973-014-3811-6

Williams, 1986, Scanning thermal profiler, Appl. Phys. Lett., 49, 1587, 10.1063/1.97288

Xu, 2015, Development of time-domain differential Raman for transient thermal probing of materials, Opt. Express, 23, 10040, 10.1364/OE.23.010040

Wang, 2016, Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement, Opt. Lett., 41, 80, 10.1364/OL.41.000080

Cahill, 2002, Thermometry and thermal transport in micro/nanoscale solid-state devices and structures, J. Heat Transfer, 124, 223, 10.1115/1.1454111

Cahill, 2004, Analysis of heat flow in layered structures for time-domain thermoreflectance, Rev. Sci. Instrum., 75, 5119, 10.1063/1.1819431

Xian, 2018, Experimental characterization methods for thermal contact resistance: a review, Appl. Therm. Eng., 130, 1530, 10.1016/j.applthermaleng.2017.10.163

Nolas, 1998, Semiconducting Ge clathrates: promising candidates for thermoelectric applications, Appl. Phys. Lett., 73, 178, 10.1063/1.121747

Sales, 1999, Atomic displacement parameters and the lattice thermal conductivity of clathrate-like thermoelectric compounds, J. Solid State Chem., 146, 528, 10.1006/jssc.1999.8354

Klemens, 1960, Thermal resistance due to point defects at high temperatures, Phys. Rev., 119, 507, 10.1103/PhysRev.119.507

Zweben, 1998, Advances in composite materials for thermal management in electronic packaging, JOM, 50, 47, 10.1007/s11837-998-0128-6

Endo, 2008, Potential applications of carbon nanotubes, 13

Mighri, 2004, Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in the fuel cell application, Polym. Eng. Sci., 44, 1755, 10.1002/pen.20177

Njuguna, 2003, Polymer nanocomposites for aerospace applications: properties, Adv. Eng. Mater., 5, 769, 10.1002/adem.200310101

Filippakou, 2001, Electrical contact overheating under short-circuit currents, Electr. Power Syst. Res., 57, 141, 10.1016/S0378-7796(01)00081-5

Tavman, 2004, Nanoengineered nanofibrous materials, NATO Science Series II, 449

Bigg, 1986, Thermally conductive polymer compositions, Polym. Compos., 7, 125, 10.1002/pc.750070302