Thermal stimuli-responsive topical platform based on copaiba oil-resin: Design and performance upon ex-vivo human skin
Tài liệu tham khảo
Pan American Health Organization;World Health Organization, Plan of action to strengthen the surveillance and control of leishmaniasis in the Americas 2017-2022, 2021. https://www.paho.org/en/documents/plan-action-strengthen-surveillance-and-control-leishmaniasis-americas-2017-2022.
Brasil, 2007
World health organization, Leishmaniases report, 2021. https://www.paho.org/en/topics/leishmaniasis.
World Health Organization, 2014
Arboleda, 2019, Successful treatment of cutaneous leishmaniasis with intralesional meglumine antimoniate: A case series, Rev. Soc. Bras. Med. Trop., 52, 10.1590/0037-8682-0211-2018
J. de P. Carvalho, T.M. de Assis, T.C. Simões, G. Cota, Estimating direct costs of the treatment for mucosal leishmaniasis in Brazil, Rev. Soc. Bras. Med. Trop. 54 (2021) 1–9. https://doi.org/10.1590/0037-8682-0454-2020.
Carvalho, 2005, Topical antiinflammatory and analgesic activities of Copaifera Duckei dwyer, Phyther. Res., 19, 946, 10.1002/ptr.1762
dos Santos, 2012, Copaiba Oil: An Alternative to Development of New Drugs against Leishmaniasis, Evidence-Based Complement. Altern. Med., 1, 10.1155/2012/898419
L.A.R. Valadas, M.F. Gurgel, J.M. Mororó, S.G. da C. Fonseca, C.S.R. Fonteles, C.B.M. de Carvalho, F.V. Fechine, E.M. Rodrigues Neto, M.M. de França Fonteles, F.O. Chagas, P.L.D. Lobo, M.A.M. Bandeira, Dose-response evaluation of a copaiba-containing varnish against streptococcus mutans in vivo, Saudi Pharm. J. (2018). https://doi.org/10.1016/j.jsps.2018.12.004.
dos Santos, 2008, Antimicrobial activity of Brazilian copaiba oils obtained from different species of the Copaifera genus, Mem. Inst. Oswaldo Cruz., 103, 277, 10.1590/S0074-02762008005000015
Rondon, 2012, In vitro efficacy of Coriandrum sativum, Lippia sidoides and Copaifera reticulata against Leishmania chagasi, Rev. Bras. Parasitol. Veterinária., 21, 185, 10.1590/S1984-29612012000300002
Da Silva, 2018, Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: a review, J. Integr. Med., 16, 211, 10.1016/j.joim.2018.04.004
Rodrigues Santana, 2014, Uso medicinal do óleo de copaíba (Copaifera sp.) por pessoas da melhor idade no município de Presidente Médici, Rondônia, Brasil, Acta Agronómica, 63, 361, 10.15446/acag.v63n4.39111
Brasil. Formulário de Fitoterápicos da Farmacopeia Brasileira. Ministério da Saúde, 1° edição, 2011.
U.S. Food and Drugs Administration - Department of Health and Human Services, Code of Federal Regulations Title 21. Chapter I-, Food and drug administration - 3 2019. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=172.510.
dos Santos, 2011, Leishmania amazonensis: Effects of oral treatment with copaiba oil in mice, Exp. Parasitol., 129, 145, 10.1016/j.exppara.2011.06.016
Carneiro, 2012, Drug delivery systems for the topical treatment of cutaneous leishmaniasis, Expert Opin. Drug Deliv., 9, 1083, 10.1517/17425247.2012.701204
R. Said dos Santos, J. Bassi da Silva, H.C. Rosseto, C.F. Vecchi, K. da S.S. Campanholi, W. Caetano, M.L. Bruschi, Emulgels Containing Propolis and Curcumin: The Effect of Type of Vegetable Oil, Poly(Acrylic Acid) and Bioactive Agent on Physicochemical Stability, Mechanical and Rheological Properties, Gels. 7 (2021) 120. https://doi.org/10.3390/gels7030120.
Esposito, 2018, Organogels, promising drug delivery systems: an update of state-of-the-art and recent applications, J. Control. Release., 10.1016/j.jconrel.2017.12.019
X. Su, H. Wang, Z. Tian, X. Duan, Z. Chai, Y. Feng, Y. Wang, Y. Fan, J. Huang, A Solvent Co-cross-linked Organogel with Fast Self-Healing Capability and Reversible Adhesiveness at Extreme Temperatures, ACS Appl. Mater. Interfaces. 12 (2020) acsami.0c04933. https://doi.org/10.1021/acsami.0c04933.
Yan, 2020, Fully Repairable Slippery Organogel Surfaces with Reconfigurable Paraffin-Based Framework for Universal Antiadhesion, ACS Appl. Mater. Interfaces., 12, 39807, 10.1021/acsami.0c09915
Yu, 2019, Highly Stable Amphiphilic Organogel with Exceptional Anti-icing Performance, ACS Appl. Mater. Interfaces., 11, 12838, 10.1021/acsami.8b20352
Zhang, 2020, Highly Transparent, Self-Healable, and Adhesive Organogels for Bio-Inspired Intelligent Ionic Skins, ACS Appl. Mater. Interfaces., 12, 15657, 10.1021/acsami.9b22707
Chang, 2020, Development of a topical applied functional food formulation: Adlay bran oil nanoemulgel, LWT., 117, 108619, 10.1016/j.lwt.2019.108619
Al Khateb, 2016, In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery, Int. J. Pharm., 502, 70, 10.1016/j.ijpharm.2016.02.027
da Silva Souza Campanholi,, 2020, Photodamage on Staphylococcus aureus by natural extract from Tetragonia tetragonoides (Pall.) Kuntze: Clean method of extraction, characterization and photophysical studies, J. Photochem. Photobiol. B Biol., 10.1016/j.jphotobiol.2019.111763
R.C. da Silva-Junior, K. da S.S. Campanholi, F.A.P. de Morais, M.S. dos S. Pozza, L. V. de Castro-Hoshino, M.L. Baesso, J.B. da Silva, M.L. Bruschi, W. Caetano, Photothermal Stimuli-Responsive Hydrogel Containing Safranine for Mastitis Treatment in Veterinary Using Phototherapy, ACS Appl. Bio Mater. (2020) acsabm.0c01143. https://doi.org/10.1021/acsabm.0c01143.
K. da S.S. Campanholi, G. Braga, J.B. da Silva, N.L. da Rocha, L.M.B. de Francisco, É.L. de Oliveira, M.L. Bruschi, L. V. de Castro-Hoshino, F. Sato, N. Hioka, W. Caetano, Biomedical Platform Development of a Chlorophyll-Based Extract for Topic Photodynamic Therapy: Mechanical and Spectroscopic Properties, Langmuir. 34 (2018) 8230–8244. https://doi.org/10.1021/acs.langmuir.8b00658.
Nawaz, 2014, Coarse-Graining Poly(ethylene oxide)–Poly(propylene oxide)–Poly(ethylene oxide) (PEO–PPO–PEO) Block Copolymers Using the MARTINI Force Field, J. Phys. Chem. B., 118, 1648, 10.1021/jp4092249
Gonçalves, 2020, Hypericin Delivery System Based on P84 Copolymeric Micelles Linked with N -(3-Aminopropyl)-2-pyrrolidone for Melanoma-Targeted Photodynamic Therapy, ACS Appl, Polym. Mater.
K. da S.S. Campanholi, A.P. Gerola, B.H. Vilsinski, É.L. de Oliveira, F.A.P. de Morais, B.R. Rabello, G. Braga, I.R. Calori, E.L. Silva, N. Hioka, W. Caetano, Development of Pluronic ® nanocarriers comprising Pheophorbide, Zn-Pheophorbide, lapachol and β-lapachone combined drugs: Photophysical and spectroscopic studies, Dye. Pigment. (2018). https://doi.org/10.1016/j.dyepig.2018.04.057.
R. Combuca da Silva Junior, K. da Silva Souza Campanholi, F.A. Pedroso de Morais, M. Soares dos Santos Pozza, G. Tadeu dos Santos, N. Hioka, W. Caetano, Development and applications of safranine-loaded Pluronic® F127 and P123 photoactive nanocarriers for prevention of bovine mastitis: In vitro and in vivo studies, Dye. Pigment. 167 (2019) 204–215. https://doi.org/10.1016/j.dyepig.2019.04.037.
Akash, 2015, Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives, J. Control. Release., 209, 120, 10.1016/j.jconrel.2015.04.032
Escobar-Chávez, 2006, Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations, J. Pharm. Pharm. Sci., 9, 339
C. Chaibundit, N.M.P.S. Ricardo, F. de M.L.L. Costa, S.G. Yeates, C. Booth, Micellization and Gelation of Mixed Copolymers P123 and F127 in Aqueous Solution, Langmuir. 23 (2007) 9229–9236. https://doi.org/10.1021/la701157j.
De Souza Ferreira, 2017, Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications, J. Mech. Behav. Biomed. Mater., 68, 265, 10.1016/j.jmbbm.2017.02.016
É.L. de Oliveira, S.B.S. Ferreira, L. V. de Castro-Hoshino, K. da S.S. Campanholi, I.R. Calori, F.A.P. de Morais, E. Kimura, R.C. da Silva Junior, M.L. Bruschi, F. Sato, N. Hioka, W. Caetano, Thermoresponsive Hydrogel-Loading Aluminum Chloride Phthalocyanine as a Drug Release Platform for Topical Administration in Photodynamic Therapy, Langmuir. 37 (2021) 3202–3213. https://doi.org/10.1021/acs.langmuir.1c00148.
Said dos Santos, 2020, Emulgels Containing Carbopol 934P and Different Vegetable Oils for Topical Propolis Delivery: Bioadhesion, Drug Release Profile, and Ex Vivo Skin Permeation Studies, AAPS PharmSciTech., 21, 209, 10.1208/s12249-020-01748-3
Dorneles, 2013, Susceptibility of Trypanosoma evansi in the copaiba oil : in vitro test and in mice experimentally infected with the parasite, Acta Sci. Vet.
De Souza, 2017, In vitro and in vivo antimalarial potential of oleoresin obtained from Copaifera reticulata Ducke (Fabaceae) in the Brazilian Amazon rainforest, Phytomedicine., 24, 111, 10.1016/j.phymed.2016.11.021
F. de F. Fernandes, E. de P.S. Freitas, Acaricidal activity of an oleoresinous extract from Copaifera reticulata (Leguminosae: Caesalpinioideae) against larvae of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), Vet. Parasitol. (2007). https://doi.org/10.1016/j.vetpar.2007.02.035.
da Cruz, 2021, Effect of Phonophoresis and Copaiba Oil on Oxidative Stress Biomarkers after Skeletal Muscle Injury in Rats, Ultrasound Med, Biol., 47, 2657
Mazur, 2019, Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro, Colloids Surfaces B Biointerfaces., 176, 507, 10.1016/j.colsurfb.2018.12.048
Pascoal, 2017, Copaiba oil-loaded commercial wound dressings using supercritical CO 2: A potential alternative topical antileishmanial treatment, J. Supercrit. Fluids., 129, 106, 10.1016/j.supflu.2017.02.012
Brasil. Farmacopeia Brasileira, Agência Nacional de Vigilância Sanitária. 5° Edição. (2010) .
Breitkreitz, 2014, Experimento didático de quimiometria para planejamento de experimentos: Avaliação das condições experimentais na determinação espectrofotométrica de Ferro II com o-Fenantrolina. Um tutorial, Parte III, Quim. Nova., 37, 564
Turkoglu, 2019, Analysis of boride layer thickness of borided AISI 430 by response surface methodology, Int. J. Optim. Control Theor. Appl., 9, 39, 10.11121/ijocta.01.2019.00660
Taniki, 2012, Modelling and optimization of the surface roughness in the dry turning of the cold rolled alloyed steel using regression analysis, J. Brazilian Soc. Mech. Sci. Eng., 34, 41
R Development Core Team, R: A language and environment for statistical computing., R Found, Stat. Comput. (2019). https://www.r-project.org/.
Russell V. Lenth, Response-Surface Methods in R, Using rsm., J. Stat. Softw. 32 (2009) 1–17. http://www.jstatsoft.org/v32/i07/.
Lima, 2011, Pre-clinical validation of a vaginal cream containing copaiba oil (reproductive toxicology study), Phytomedicine., 18, 1013, 10.1016/j.phymed.2011.05.004
Said dos Santos, 2020, The effect of carbomer 934P and different vegetable oils on physical stability, mechanical and rheological properties of emulsion-based systems containing propolis, J. Mol. Liq., 307, 112969, 10.1016/j.molliq.2020.112969
S.B. de S. Ferreira, K.M. Slowik, L.V. de Castro Hoshino, M.L. Baesso, C. Murdoch, H.E. Colley, M.L. Bruschi, Mucoadhesive emulgel systems containing curcumin for oral squamous cell carcinoma treatment: From pre-formulation to cytotoxicity in tissue-engineering oral mucosa, Eur. J. Pharm. Sci. 151 (2020) 105372. https://doi.org/10.1016/j.ejps.2020.105372.
Brasil, 2004, Guia de estabilidade de produtos cosméticos - Séries temáticas. Agência Nacional de Vigilância Sanitária. 1° edição, Brasília (DF)
Europe Cosmetic, Guidelines on stability testing., Colipa-CTFA, 2004, https://www.cosmeticseurope.eu/files/5914/6407/8121/Guidelines_on_Stability_Testing_of_Cosmetics_CE-CTFA_-_2004.pdf.
Maldonado, 2017, Nanoparticulation of bovine serum albumin and poly-d-lysine through complex coacervation and encapsulation of curcumin, Colloids Surfaces B Biointerfaces., 159, 759, 10.1016/j.colsurfb.2017.08.047
M.C. Alves, Permeação cutânea e vaginal de fármacos: rotas alternativas, 2018.
Abd, 2016, Skin models for the testing of transdermal drugs, Clin. Pharmacol. Adv. Appl., 8, 163
Teixeira, 2012, Retinyl palmitate polymeric nanocapsules as carriers of bioactives, J. Colloid Interface Sci., 382, 36, 10.1016/j.jcis.2012.05.042
Gelker, 2018, Permeabilization of human stratum corneum and full-thickness skin samples by a direct dielectric barrier discharge, Clin. Plasma Med., 9, 34, 10.1016/j.cpme.2018.02.001
Yamamoto, 2017, Prediction of Human Pharmacokinetic Profile After Transdermal Drug Application Using Excised Human Skin, J. Pharm. Sci., 106, 2787, 10.1016/j.xphs.2017.03.003
Meneguin, 2017, Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release, Carbohydr. Polym., 157, 1013, 10.1016/j.carbpol.2016.10.062
Baesso, 1994, Laser-induced photoacoustic signal phase study of stratum corneum and epidermis, Analyst., 119, 561, 10.1039/an9941900561
Meshulam, 1995, A Simplified New Assay for Assessment of Fungal Cell Damage with the Tetrazolium Dye, (2,3)-bis-(2-Methoxy-4-Nitro-5-Sulphenyl)-(2H)-Tetrazolium-5-Carboxanilide (XTT), J. Infect. Dis., 172, 1153, 10.1093/infdis/172.4.1153
Mosmann, 1983, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods., 65, 55, 10.1016/0022-1759(83)90303-4
2015 RStudio Team, RStudio: Integrated Development for R. RStudio, Inc. Version 1.1.463, (2015). http://www.r-qualitytools.org.
Barros, 2010
Geremias-Andrade, 2016, Rheology of Emulsion-Filled Gels Applied to the Development of Food Materials, Gels., 2, 22, 10.3390/gels2030022
T. Tadros, P. Izquierdo, J. Esquena, C. Solans, Formation and stability of nano-emulsions, 109 (2004) 303–318. https://doi.org/10.1016/j.cis.2003.10.023.
Pre-proofs, 2019, Modeling droplets swelling and escape in double emulsions using population balance equations, Chem. Eng. J., 122824
S.U. Rawal, M.M. Patel, Lipid nanoparticulate systems, in: Lipid Nanocarriers Drug Target., Elsevier, 2018: pp. 49–138. https://doi.org/10.1016/B978-0-12-813687-4.00002-5.
Sulaimon, 2018, Effects of Interfacial Tension Alteration on the Destabilization of Water-Oil Emulsions, Sci. Technol. Behind Nanoemulsions., 10.5772/intechopen.74769
D. Ganguli, M. Ganguli, Emulsions: A General Introduction, in: Inorg. Part. Synth. via Macro Microemulsions, Springer US, Boston, MA, 2003: pp. 1–19. https://doi.org/10.1007/978-1-4615-0047-6_1.
J.L. Serra, A.M. da C. Rodrigues, R.A. de Freitas, A.J. de A. Meirelles, S.H. Darnet, L.H.M. da Silva, Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition, Food Res. Int. 116 (2019) 12–19. https://doi.org/10.1016/j.foodres.2018.12.028.
Kokal, 2005, Crude Oil Emulsions: A State-Of-The-Art Review, SPE Prod & Fac 20, 20, 5, 10.2118/77497-PA
K. da S.S. Campanholi, J.B. da Silva, V.R. Batistela, R.S. Gonçalves, R. Said dos Santos, R.B. Balbinot, D. Lazarin-Bidóia, M.L. Bruschi, T.U. Nakamura, C.V. Nakamura, W. Caetano, Design and Optimization of Stimuli-responsive Emulsion-filled Gel for Topical Delivery of Copaiba Oil-resin, J. Pharm. Sci. (2021). https://doi.org/10.1016/j.xphs.2021.10.003.
Brasil, 2013, Guia para a condução de estudos não clínicos de toxicologia e segurança farmacológica necessários ao desenvolvimento de medicamentos. Agência Nacional de Vigilância Sanitária, Versão, 2, 1
Food Drug and Administration, 2003, Guidance for Industry: Q1A(R2) Stability Testing of New Drug Substances and Products, U.S. Department of Health and Human Services., U.S. Department of Health and Human Services, 1
Freitas, 2006, Rheological characterization of Poloxamer 407 nimesulide gels, Rev. Ciencias Farm. Basica e Apl., 27, 113
Soliman, 2019, Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications, Drug Discov. Today., 24, 1575, 10.1016/j.drudis.2019.05.036
Gioffredi, 2016, Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications, Procedia CIRP., 49, 125, 10.1016/j.procir.2015.11.001
Santos, 2019, Influence of a shear post-treatment on rheological properties, microstructure and physical stability of emulgels formed by rosemary essential oil and a fumed silica, J. Food Eng., 241, 136, 10.1016/j.jfoodeng.2018.08.013
Li, 2020, Response Surface Methodology Design for Biobased and Sustainable Coatings for Water- and Oil-Resistant Paper, ACS Appl. Polym. Mater., 2, 1378, 10.1021/acsapm.9b01238
Bandara, 2019, Use of Response Surface Methodology To Develop and Optimize the Composition of a Chitosan–Polyethyleneimine–Graphene Oxide Nanocomposite Membrane Coating To More Effectively Remove Cr(VI) and Cu(II) from Water, ACS Appl. Mater. Interfaces., 11, 17784, 10.1021/acsami.9b03601
De Araújo Pereira, 2013, Preparation and Characterization of Mucoadhesive Thermoresponsive Systems Containing Propolis for the Treatment of Vulvovaginal Candidiasis, J. Pharm. Sci., 102, 1222, 10.1002/jps.23451
Osmałek, 2017, Novel organogels for topical delivery of naproxen: design, physicochemical characteristics and in vitro drug permeation, Pharm. Dev. Technol., 22, 521, 10.3109/10837450.2015.1135342
Rahimpour, 2016, Response surface methodology and artificial neural network modelling of an aqueous two-phase system for purification of a recombinant alkaline active xylanase, Process Biochem., 51, 452, 10.1016/j.procbio.2015.12.018
F. Coelho Sampaio, T.L. da Conceição Saraiva, G. Dumont de Lima e Silva, J. Teles de Faria, C. Grijó Pitangui, B. Aliakbarian, P. Perego, A. Converti, Batch growth of Kluyveromyces lactis cells from deproteinized whey: Response surface methodology versus Artificial neural network—Genetic algorithm approach, Biochem. Eng. J. 109 (2016) 305–311. https://doi.org/10.1016/j.bej.2016.01.026.
Ferreira, 2013, Raman Spectroscopic Investigation of Carotenoids in Oils from Amazonian Products, Spectrosc. Lett., 46, 122, 10.1080/00387010.2012.693569
Boaroto, 2018, Identification and quantification of β-caryophyllene in copaiba oil using Raman spectroscopy, Instrum. Sci. Technol., 46, 265, 10.1080/10739149.2017.1380662
Martins, 2019, Approach by Raman and infrared spectroscopy in three vegetable oils from the Brazilian Amazon, Rev. Mex. Física., 65, 328, 10.31349/RevMexFis.65.328
Chandra, 2017, Polymer surfactant-assisted tunable nanostructures of amorphous IrO x thin films for efficient electrocatalytic water oxidation, Catal. Today., 290, 51, 10.1016/j.cattod.2017.03.009
Lyon, 2014, Why are Normal Distributions Normal?, Br. J. Philos. Sci., 65, 621, 10.1093/bjps/axs046
Singh, 2016, Groundnut oil based emulsion gels for passive and iontophoretic delivery of therapeutics, Des. Monomers Polym., 10.1080/15685551.2016.1152540
Andonova, 2017, Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels, Trop. J. Pharm. Res., 16, 1455, 10.4314/tjpr.v16i7.1
Vigato, 2019, Synthesis and characterization of nanostructured lipid-poloxamer organogels for enhanced skin local anesthesia, Eur. J. Pharm. Sci., 128, 270, 10.1016/j.ejps.2018.12.009
A. Kumar, C.K. Dixit, Methods for characterization of nanoparticles, in: Adv. Nanomedicine Deliv. Ther. Nucleic Acids, Elsevier, 2017: pp. 43–58. https://doi.org/10.1016/B978-0-08-100557-6.00003-1.
Borghi-pangoni, 2016, Screening and In Vitro Evaluation of Mucoadhesive Thermoresponsive System Containing Methylene Blue for Local Photodynamic Therapy of Colorectal Cancer, Pharm Res., 776, 10.1007/s11095-015-1826-8
Junqueira, 2016, Functional Polymeric Systems as Delivery Vehicles for Methylene Blue in Photodynamic Therapy, Langmuir., 32, 19, 10.1021/acs.langmuir.5b02039
Gu, 2020, Multifunctional Poly(vinyl alcohol) Nanocomposite Organohydrogel for Flexible Strain and Temperature Sensor, ACS Appl. Mater. Interfaces., 12, 40815, 10.1021/acsami.0c12176
Cristini, 2003, Drop breakup and fragment size distribution in shear flow, J. Rheol. (N.Y. N.Y), 47, 1283, 10.1122/1.1603240
Tsakalos, 1998, Deformation and breakup mechanisms of single drops during shear, J. Rheol. (N. Y. N. Y), 42, 1403, 10.1122/1.550894
Barai, 2016, Breakup modes of fluid drops in confined shear flows, Phys. Fluids., 28, 073302, 10.1063/1.4954995
Cascon, 2000, Characterization of the chemical composition of oleoresins of Copaifera guianensis Desf., Copaifera duckei Dwyer and Copaifera multijuga Hayne, Phytochemistry., 55, 773, 10.1016/S0031-9422(00)00284-3
Pieri, 2009, Óleo de copaíba (Copaifera sp.): histórico, extração, aplicações industriais e propriedades medicinais, Rev. Bras. Plantas Med., 11, 465, 10.1590/S1516-05722009000400016
M.L., Bruschi., Strategies to Modify the Drug Release from Pharmaceutical Systems., 1° Edition, 2015.
A.H. Allen Jr L V., Popovich NG, Formas Farmacêuticas e Sistemas de Liberação de Fármacos., 9° Edição, 2013.
T.K. Aulton ME, Aulton delineamento de formas farmacêuticas., 4° Edição. 2016.
Duchene, 1992, Principle and investigation of the bioadhesion mechanism of solid dosage forms, Biomaterials., 13, 709, 10.1016/0142-9612(92)90132-8
S. Monteiro e Silva, G. Calixto, J. Cajado, P. de Carvalho, C. Rodero, M. Chorilli, G. Leonardi, Gallic Acid-Loaded Gel Formulation Combats Skin Oxidative Stress: Development, Characterization and Ex Vivo Biological Assays, Polymers (Basel). 9 (2017) 391. https://doi.org/10.3390/polym9090391.
Fonseca-Santos, 2016, Design, characterization, and biological evaluation of curcumin-loaded surfactant-based systems for topical drug delivery, Int. J. Nanomedicine., 11, 4553, 10.2147/IJN.S108675
Edsman, 2005, Pharmaceutical applications of mucoadhesion for the non-oral routes, J. Pharm. Pharmacol., 57, 3, 10.1211/0022357055227
Paparella, 2005, Transdermal patches: An unseen risk for harm, J. Emerg. Nurs., 31, 278, 10.1016/j.jen.2005.01.010
Ameen, 2017, Transdermal delivery of dimethyl fumarate for Alzheimer’s disease: Effect of penetration enhancers, Int. J. Pharm., 529, 465, 10.1016/j.ijpharm.2017.07.031
Zidan, 2017, Effect of Isopropyl Myristate on Transdermal Permeation of Testosterone From Carbopol Gel, J. Pharm. Sci., 106, 1805, 10.1016/j.xphs.2017.03.016
Kant, 2014, Topical pluronic F-127 gel application enhances cutaneous wound healing in rats, Acta Histochem., 116, 5, 10.1016/j.acthis.2013.04.010
Ali, 2013, A comparison of Raman, FTIR and ATR-FTIR micro spectroscopy for imaging human skin tissue sections, Anal. Methods., 5, 2281, 10.1039/c3ay40185e
Norcino, 2020, Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging, Food Hydrocoll., 106, 105862, 10.1016/j.foodhyd.2020.105862
Pereira, 2019, In vitro evaluation of PVA gels loaded with Copaiba Oil and Duotrill®, Polímeros., 29, 1, 10.1590/0104-1428.03719
Dias, 2014, Optimization of Copaiba oil-based nanoemulsions obtained by different preparation methods, Ind. Crop. Prod., 59, 154, 10.1016/j.indcrop.2014.05.007
Cestelli Guidi, 2012, In vivo skin leptin modulation after 14 MeV neutron irradiation: a molecular and FT-IR spectroscopic study, Anal. Bioanal. Chem., 404, 1317, 10.1007/s00216-012-6018-3
K.C.O. De Albuquerque, A. do S.S. da Veiga, J.V. da S. e Silva, H.P.C. Brigido, E.P.D.R. Ferreira, E.V.S. Costa, A.M.D.R. Marinho, S. Percário, M.F. Dolabela, Brazilian Amazon Traditional Medicine and the Treatment of Difficult to Heal Leishmaniasis Wounds with Copaifera, Evidence-Based Complement. Altern. Med. 2017 (2017) 1–9. https://doi.org/10.1155/2017/8350320.
Santos, 2008, Effect of Brazilian copaiba oils on Leishmania amazonensis, J. Ethnopharmacol., 120, 204, 10.1016/j.jep.2008.08.007
Monzote, 2019, In-vitro evaluation of 52 commercially-available essential oils against leishmania amazonensis, Molecules., 24, 1, 10.3390/molecules24071248
dos Santos, 2013, Antileishmanial activity of diterpene acids in copaiba oil, Mem. Inst. Oswaldo Cruz., 108, 59, 10.1590/S0074-02762013000100010