Thermal stability of nickel structure obtained by high-pressure torsion in liquid nitrogen
Tóm tắt
Từ khóa
Tài liệu tham khảo
H. Gleiter, “Nanostructured materials: Basic concepts and microstructure,” Acta Mater. 48, 1–29 (2000).
I. P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].
A. I. Gusev, Nanomaterials, Nanostruñures, Nanotechnologies (FIZMATLIT, Moscow, 2009) [in Russian].
Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, et al., Grain Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].
R. Z. Valiev and I. V. Aleksandrov, Bulk Nanostructured Metal Materials (Akademkniga, Moscow, 2007) [in Russian].
R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zehetbauer, and Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformation,” J. Miner. Met.Mater. Soc. (JOM) 58(4), 33–39 (2006).
R. Pippan, S. Scheriau, A. Hohenwarter, and M. Hafok, “Advantages and limitations of HPT: A review,” Mater. Sci. Forum 584–586, 16–21 (2008).
A. P. Zhilyaev, G. V. Nurislamova, B. K. Kim, M. D. Baro, J. A. Szpunar, and T. G. Langdon, “Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion,” Acta Mater. 51, 753–765 (2003).
A. V. Korznikov, A. N. Tyumentsev, and I. A. Ditenberg, “On the limiting minimum size of grains formed in metallic materials produced by high-pressure torsion, Phys. Met. Metallogr. 106, 418–423 (2008).
R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, “Saturation of fragmentation during severe plastic deformation,” Ann. Rev. Mater. Res. 40, 319–343 (2010).
N. A. Smirnova, V. I. Levit, and M. V. Degtyarev, “Nickel recrystallization upon heating after large deformations at 77 K,” Fiz. Met. Metalloved. 66, 1027–1029 (1988).
H. W. Zhang, X. Huang, R. Pippan, and N. Hansen, “Thermal behavior of Ni (99.967 and 99.5% purity) deformed to an ultra-high strain by high pressure torsion,” Acta Mater. 58, 1698–1707 (2010).
H. W. Zhang, K. Lu, R. Pippan, X. Huang, and N. Hansen, “Enhancement of strength and stability of nanostructured Ni by small amounts of solutes,” Scr. Mater. 65, 481–484 (2011).
V. V. Popov, E. N. Popova, D. D. Kuznetsov, A. V. Stolbovsky, E. V. Shorohov, P. A. Nasonov, K. A. Gaan, G. Reglitz, S. V. Divinski, and G. Wilde, “Evolution of Ni structure at dynamic channel-angular pressing,” Mater. Sci. Eng., A 585, 281–291 (2013).
E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Thermal stability of nanocrystalline Nb produced by severe plastic deformation,” Phys. Met. Metallogr. 101, 52–57 (2006).
E. N. Popova, V. V. Popov, E. P. Romanov, and V. P. Pilyugin, “Effect of the degree of deformation on the structure and thermal stability of nanocrystalline niobium produced by high-pressure torsion,” Phys. Met. Metallogr. 103, 407–413 (2007).
Z. Horita, D. J. Smith, M. Nemoto, R. Z. Valiev, and T. G. Langdon, “Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy,” J. Mater. Res. 13, 446–450 (1998).
A. P. Zhilyaev, M. D. Baro, Z. Khorita, Dzh. A. Shpunar, and T. G. Langdon, “Microstructure and grain-boundary spectrum of ultrafine-grained nickel produced by severe plastic deformation,” Russ. Metall. (Metally), No. 1, 60–74 (2004).
V. P. Pilyugin, T. M. Gapontseva, T. I. Chashukhina, L. M. Voronova, L. I. Shchinova, and M. V. Degtyarev, “Evolution of the structure and hardness of nickel upon cold and low-temperature deformation under pressure,” Phys. Met. Metallogr. 105, 409–417 (2008).
A. P. Zhilyaev, K. Ohishi, T. G. Langdon, and T. R. McNelley, “Microstructural evolution in commercial purity aluminum during high-pressure torsion,” Mater. Sci. Eng., A 410-411, 277–280 (2005).
V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “Thermal stability of nanocrystalline structure in niobium processed by high pressure torsion at cryogenic temperatures,” Mater. Sci. Eng., A 528, 1491–1496 (2011).
V. V. Popov, E. N. Popova, A. V. Stolbovskii, V. P. Pilyugin, and N. K. Arkhipova, “Nanostructurization of Nb by high-pressure torsion in liquid nitrogen and the thermal stability of the structure obtained,” Phys. Met. Metallogr. 113, 295–301 (2012).
V. V. Popov, E. N. Popova, A. V. Stolbovskiy, and V. P. Pilyugin, “The structure of Nb obtained by severe plastic deformation and its thermal stability,” Mater. Sci. Forum 667–669, 409–414 (2011).
V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovskii, “Mössbauer emission spectroscopy of grain boundaries in poly- and nanocrystalline niobium,” Bull. Russ. Acad. Sci.: Phys. 71, 1244–1248 (2007).
V. V. Popov, V. N. Kaigorodov, E. N. Popova, and A. V. Stolbovsky, “NGR investigation of grain-boundary diffusion in poly- and nanocrystalline Nb,” Defect and Diffusion Forum 263, 69–74 (2007).
K. Y. Mulyukov, G. F. Korznikova, R. Z. Abdulov, and R. Z. Valiev, “Magnetic hysteretic properties of submicron nickel and their variations upon annealing,” J. Magn. Magn. Mater. 89, 207–213 (1990).
E. Schafler and R. Pippan, “Effect of thermal treatment on microstructure in high pressure torsion (HPT) deformed nickel,” Mater. Sci. Eng., A 387-389, 799–804 (2004).
A. V. Korznikov, G. F. Korznikova, M. M. Myshlyaev, R. Z. Valiev, D. Salimonenko, and O. Dimitrov, “Evolution of nanocrystalline Ni structure during heating,” Phys. Met. Metallogr. 84, 413–417 (1997).
I. I. Novikov, Theory of Heat Treatment of Metals (Metallurgiya, Moscow, 1986) [in Russian].