Thermal stability of a waste-based alkali-activated material for thermal energy storage
Tài liệu tham khảo
Al Bakri, 2011, Review on fly ash-based geopolymer concrete without Portland Cement, J. Eng. Technol. Res., 3, 1
American Coal Ash Association (ACCA) (2015). Key Findings 2015-Coal Combustion Products Utilization-U.S. Historical Perspective and Forecast. Available at: https://www.acaa-usa.org/Portals/9/Files/PDFs/Key-Findings-Report-2015.pdf
Baba, 2019, Multilevel comparison between magnetite and quartzite as thermocline energy storage materials, Appl. Therm. Eng., 149, 1142, 10.1016/j.applthermaleng.2018.12.002
Bauer T., Pfleger N., Laing D., Steinmann W.-.D., Eck M., Kaesche S.High Temperature Molten Salts For Solar Power Application.Chapter 20 in “Molten Salts Chemistry: From Lab to Applications”, edited by Lantelme, F. and Groult, H., Elsevier, 2013. https://doi.org/10.1016/B978-0-12-398538-5.00020-2
Benaissa W., Carson D.Oxidation properties of ”Solar Salt”. AIChE Spring Meeting 2011 & 7. Global Congress on Process Safety (GCPS), Mar 2011, Chicago, United States. pp.NC.-ineris-00976226.
Calvet, 2013, Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system, Appl. Energy, 109, 387, 10.1016/j.apenergy.2012.12.078
Chen, 2018, State of the art on the high-temperature thermochemical energy storage systems, Energy Convers. Manage., 177, 792, 10.1016/j.enconman.2018.10.011
Chen, 2017, Setting and nanostructural evolution of metakaolin geopolymer, 221
Davidovits J. (2018). Why Alkali-Activated Materials (AAM) are NOT Geopolymers?Technical paper #25, doi: 10.13140/RG.2.2.34337.25441
Diago, 2015, Characterization of desert sand for its feasible use as thermal energy storage medium, Energy Procedia, 75, 2113, 10.1016/j.egypro.2015.07.333
Garicia-Lodeiro, 2015, 19
Grosu, 2017, Natural Magnetite for thermal energy storage: excellent thermophysical properties, reversible latent heat transition and controlled thermal conductivity, Solar Energy Mater. Solar Cells, 161, 170, 10.1016/j.solmat.2016.12.006
Gutierrez, 2016, Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials, Renew. Sustain. Rev., 59, 763, 10.1016/j.rser.2015.12.071
Haneefa, 2013, Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors, Nucl. Eng. Des., 265, 542, 10.1016/j.nucengdes.2013.09.004
Hirth, 2015, Integration costs revisited-an economic framework for wind and solar variability, Renew Energy, 74, 925, 10.1016/j.renene.2014.08.065
Hoivik, 2019, Long-term performance results of concrete-based modular thermal energy storage system, J. Energy Storage, 24, 10.1016/j.est.2019.04.009
Jacob, 2020, Novel Geopolymer for use as a Sensible Storage Option in High Temperature Thermal Energy Storage Systems, 10.1063/5.0028721
Jacob, 2018, Effect of inner coatings on the stability of chloride-based phase change materials encapsulated in geopolymers, Sol. Energy Mater. Sol. Cells, 174, 271, 10.1016/j.solmat.2017.09.016
Jacob, 2016, Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants, Appl. Energy, 180, 586, 10.1016/j.apenergy.2016.08.027
Jacob, 2016, Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage, AIP Conf. Proc., 1734
Jemmal, 2017, Experimental characterization of siliceous rocks to be used as filler materials for air-rock packed beds thermal energy storage systems in concentrated solar power plants, Sol. Energy Mater. Sol. Cells, 171, 33, 10.1016/j.solmat.2017.06.026
Jonemann M. (2013). Advanced Thermal Storage System with Novel Molten Salt. Subcontract Report: NREL/SR-5200-58595. Available at: https://www.nrel.gov/docs/fy13osti/58595.pdf [Last Accessed: 15th September 2020]
Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev., 14, 955, 10.1016/j.rser.2009.11.011
Liu, 2020, Design of thermal energy storage system for concentrated solar power plant: thermal performance analysis, Renew. Energy, 151, 1286, 10.1016/j.renene.2019.11.115
Liu, 2016, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable Sustainable Energy Rev., 53, 1411, 10.1016/j.rser.2015.09.026
Meffre, 2015, High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes, Waste Biomass Valor, 6, 1003, 10.1007/s12649-015-9409-9
Miró, 2015, Embodied energy in thermal energy storage (TES) systems for high temperature applications, Appl Energy, 137, 793, 10.1016/j.apenergy.2014.06.062
Mohan, 2019, Sensible energy storage options for concentrating solar power plants operating above 600 °C, Renew. Sustain. Rev., 107, 319, 10.1016/j.rser.2019.01.062
Myers, 2016, Thermal energy storage using chloride salts and their eutectics, Appl. Therm Eng., 109, 889, 10.1016/j.applthermaleng.2016.07.046
NREL (2020). Concentrating Solar Power Projects. Available at: https://solarpaces.nrel.gov/projects [Last Accessed: 15th September 2020]
Ortega-Fernandez, 2015, Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material, Energy, 89, 601, 10.1016/j.energy.2015.05.153
Okazaki, 2020, Electric thermal energy storage and advantage of rotating heater having synchronous inertia, Renew. Energy, 151, 563, 10.1016/j.renene.2019.11.051
Peys, 2019, Alkali-activation of CaO-FeOx-SiO2 slag: formation mechanism from in-situ X-ray total scattering, Cem. Concr. Res., 122, 179, 10.1016/j.cemconres.2019.04.019
Prieto, 2019, Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance, Appl. Energy, 254, 10.1016/j.apenergy.2019.113646
Provis J.L. (2006). Modelling the Formation of Geopolymers. PhD thesis, Chemical & Biomolecular Engineering, University of Melbourne.
[38]Railsback, B. (2006). Some Fundamentals of Mineralogy and Geochemistry. Available Online: http://railsback.org/FundamentalsIndex.html [Last Accessed: 20th October 2020]
Redhammer, 2019, Low Temperature Synthesis of Aegirine NaFeSi2O6: spectroscopy (57Fe Mössbauer, Raman) and Size/Strain Analysis from X-ray Powder Diffraction, Minerals, 9, 444, 10.3390/min9070444
Sheppard, 2019, The potential of metal hydrides paired with compressed hydrogen as thermal energy storage for concentrating solar power plants, Int. J. Hydrogen Energy, 44, 9143, 10.1016/j.ijhydene.2019.01.271
del Valle-Zermeño, 2016, MSWI bottom ash for thermal energy storage: an innovative and sustainable approach for its reutilization, Renew. Energy, 99, 431, 10.1016/j.renene.2016.07.027
Xu, 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, 160, 286, 10.1016/j.apenergy.2015.09.016
Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35, 1688, 10.1016/j.cemconres.2004.10.042
Zhang, 2012, Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature, J. Non Cryst. Solids, 358, 620, 10.1016/j.jnoncrysol.2011.11.006
Zhao, 2016, Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants, Appl. Energy., 178, 784, 10.1016/j.apenergy.2016.06.034
Zhuang, 2016, Fly ash-based geopolymer: clean production, properties and applications, J. Clean Prod., 125, 253, 10.1016/j.jclepro.2016.03.019