Thermal stability of a waste-based alkali-activated material for thermal energy storage

Chemical Thermodynamics and Thermal Analysis - Tập 3 - Trang 100014 - 2021
Patrick Keane1, Rhys Jacob1, Neil Trout2, Stephen Clarke2, Frank Bruno1
1Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
2Care of Our Environment, Adelaide, SA 5000, Australia

Tài liệu tham khảo

Al Bakri, 2011, Review on fly ash-based geopolymer concrete without Portland Cement, J. Eng. Technol. Res., 3, 1 American Coal Ash Association (ACCA) (2015). Key Findings 2015-Coal Combustion Products Utilization-U.S. Historical Perspective and Forecast. Available at: https://www.acaa-usa.org/Portals/9/Files/PDFs/Key-Findings-Report-2015.pdf Baba, 2019, Multilevel comparison between magnetite and quartzite as thermocline energy storage materials, Appl. Therm. Eng., 149, 1142, 10.1016/j.applthermaleng.2018.12.002 Bauer T., Pfleger N., Laing D., Steinmann W.-.D., Eck M., Kaesche S.High Temperature Molten Salts For Solar Power Application.Chapter 20 in “Molten Salts Chemistry: From Lab to Applications”, edited by Lantelme, F. and Groult, H., Elsevier, 2013. https://doi.org/10.1016/B978-0-12-398538-5.00020-2 Benaissa W., Carson D.Oxidation properties of ”Solar Salt”. AIChE Spring Meeting 2011 & 7. Global Congress on Process Safety (GCPS), Mar 2011, Chicago, United States. pp.NC.-ineris-00976226. Calvet, 2013, Compatibility of a post-industrial ceramic with nitrate molten salts for use as filler material in a thermocline storage system, Appl. Energy, 109, 387, 10.1016/j.apenergy.2012.12.078 Chen, 2018, State of the art on the high-temperature thermochemical energy storage systems, Energy Convers. Manage., 177, 792, 10.1016/j.enconman.2018.10.011 Chen, 2017, Setting and nanostructural evolution of metakaolin geopolymer, 221 Davidovits J. (2018). Why Alkali-Activated Materials (AAM) are NOT Geopolymers?Technical paper #25, doi: 10.13140/RG.2.2.34337.25441 Diago, 2015, Characterization of desert sand for its feasible use as thermal energy storage medium, Energy Procedia, 75, 2113, 10.1016/j.egypro.2015.07.333 Garicia-Lodeiro, 2015, 19 Grosu, 2017, Natural Magnetite for thermal energy storage: excellent thermophysical properties, reversible latent heat transition and controlled thermal conductivity, Solar Energy Mater. Solar Cells, 161, 170, 10.1016/j.solmat.2016.12.006 Gutierrez, 2016, Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials, Renew. Sustain. Rev., 59, 763, 10.1016/j.rser.2015.12.071 Haneefa, 2013, Performance characterization of geopolymer composites for hot sodium exposed sacrificial layer in fast breeder reactors, Nucl. Eng. Des., 265, 542, 10.1016/j.nucengdes.2013.09.004 Hirth, 2015, Integration costs revisited-an economic framework for wind and solar variability, Renew Energy, 74, 925, 10.1016/j.renene.2014.08.065 Hoivik, 2019, Long-term performance results of concrete-based modular thermal energy storage system, J. Energy Storage, 24, 10.1016/j.est.2019.04.009 Jacob, 2020, Novel Geopolymer for use as a Sensible Storage Option in High Temperature Thermal Energy Storage Systems, 10.1063/5.0028721 Jacob, 2018, Effect of inner coatings on the stability of chloride-based phase change materials encapsulated in geopolymers, Sol. Energy Mater. Sol. Cells, 174, 271, 10.1016/j.solmat.2017.09.016 Jacob, 2016, Embodied energy and cost of high temperature thermal energy storage systems for use with concentrated solar power plants, Appl. Energy, 180, 586, 10.1016/j.apenergy.2016.08.027 Jacob, 2016, Geopolymer encapsulation of a chloride salt phase change material for high temperature thermal energy storage, AIP Conf. Proc., 1734 Jemmal, 2017, Experimental characterization of siliceous rocks to be used as filler materials for air-rock packed beds thermal energy storage systems in concentrated solar power plants, Sol. Energy Mater. Sol. Cells, 171, 33, 10.1016/j.solmat.2017.06.026 Jonemann M. (2013). Advanced Thermal Storage System with Novel Molten Salt. Subcontract Report: NREL/SR-5200-58595. Available at: https://www.nrel.gov/docs/fy13osti/58595.pdf [Last Accessed: 15th September 2020] Kenisarin, 2010, High-temperature phase change materials for thermal energy storage, Renew. Sustain. Energy Rev., 14, 955, 10.1016/j.rser.2009.11.011 Liu, 2020, Design of thermal energy storage system for concentrated solar power plant: thermal performance analysis, Renew. Energy, 151, 1286, 10.1016/j.renene.2019.11.115 Liu, 2016, Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies, Renewable Sustainable Energy Rev., 53, 1411, 10.1016/j.rser.2015.09.026 Meffre, 2015, High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes, Waste Biomass Valor, 6, 1003, 10.1007/s12649-015-9409-9 Miró, 2015, Embodied energy in thermal energy storage (TES) systems for high temperature applications, Appl Energy, 137, 793, 10.1016/j.apenergy.2014.06.062 Mohan, 2019, Sensible energy storage options for concentrating solar power plants operating above 600  °C, Renew. Sustain. Rev., 107, 319, 10.1016/j.rser.2019.01.062 Myers, 2016, Thermal energy storage using chloride salts and their eutectics, Appl. Therm Eng., 109, 889, 10.1016/j.applthermaleng.2016.07.046 NREL (2020). Concentrating Solar Power Projects. Available at: https://solarpaces.nrel.gov/projects [Last Accessed: 15th September 2020] Ortega-Fernandez, 2015, Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material, Energy, 89, 601, 10.1016/j.energy.2015.05.153 Okazaki, 2020, Electric thermal energy storage and advantage of rotating heater having synchronous inertia, Renew. Energy, 151, 563, 10.1016/j.renene.2019.11.051 Peys, 2019, Alkali-activation of CaO-FeOx-SiO2 slag: formation mechanism from in-situ X-ray total scattering, Cem. Concr. Res., 122, 179, 10.1016/j.cemconres.2019.04.019 Prieto, 2019, Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance, Appl. Energy, 254, 10.1016/j.apenergy.2019.113646 Provis J.L. (2006). Modelling the Formation of Geopolymers. PhD thesis, Chemical & Biomolecular Engineering, University of Melbourne. [38]Railsback, B. (2006). Some Fundamentals of Mineralogy and Geochemistry. Available Online: http://railsback.org/FundamentalsIndex.html [Last Accessed: 20th October 2020] Redhammer, 2019, Low Temperature Synthesis of Aegirine NaFeSi2O6: spectroscopy (57Fe Mössbauer, Raman) and Size/Strain Analysis from X-ray Powder Diffraction, Minerals, 9, 444, 10.3390/min9070444 Sheppard, 2019, The potential of metal hydrides paired with compressed hydrogen as thermal energy storage for concentrating solar power plants, Int. J. Hydrogen Energy, 44, 9143, 10.1016/j.ijhydene.2019.01.271 del Valle-Zermeño, 2016, MSWI bottom ash for thermal energy storage: an innovative and sustainable approach for its reutilization, Renew. Energy, 99, 431, 10.1016/j.renene.2016.07.027 Xu, 2015, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments, Appl. Energy, 160, 286, 10.1016/j.apenergy.2015.09.016 Yip, 2005, The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation, Cem. Concr. Res., 35, 1688, 10.1016/j.cemconres.2004.10.042 Zhang, 2012, Microstructural and strength evolutions of geopolymer composite reinforced by resin exposed to elevated temperature, J. Non Cryst. Solids, 358, 620, 10.1016/j.jnoncrysol.2011.11.006 Zhao, 2016, Thermal performance and cost analysis of a multi-layered solid-PCM thermocline thermal energy storage for CSP tower plants, Appl. Energy., 178, 784, 10.1016/j.apenergy.2016.06.034 Zhuang, 2016, Fly ash-based geopolymer: clean production, properties and applications, J. Clean Prod., 125, 253, 10.1016/j.jclepro.2016.03.019