Độ ổn định nhiệt, tính chất cơ học, độ bền va đập và tính chất lưu biến kéo đơn trục của các hỗn hợp phản ứng giữa nhựa PS và nhựa SBS

Polymer Bulletin - Tập 76 - Trang 5537-5557 - 2019
Mohammad Mahbubul Hassan1,2, Tatsuhiro Takahashi1,3, Kiyohito Koyama1,3
1Venture Business Laboratory, Yamagata University, Yonezawa City, Japan
2Bioproduct and Fibre Technology Team, AgResearch Ltd., Christchurch, New Zealand
3Department of Polymer Science and Engineering, Yamagata University, Yonezawa City, Japan

Tóm tắt

Polystyrene (PS) có độ bền va đập thấp và cũng cho thấy khả năng tăng cường lực kéo yếu. Trong nghiên cứu này, copolymer ba khối poly(styrene–butadiene–styrene) (SBS) đã được trộn dung dịch và nung chảy với PS có mặt chất tạo polymer gốc tự do, dicumyl peroxide (DCP), nhằm nâng cao độ ổn định nhiệt, tính chất cơ học, độ bền va đập và khả năng tăng cường lực kéo của PS. Hỗn hợp PS/SBS trộn dung dịch chứa 0.1% DCP được ủ ở 180 °C cho thấy khả năng tăng cường lực kéo mạnh, nhưng hỗn hợp PS/SBS trộn nóng chảy ủ ở cùng nhiệt độ và thời gian lại cho thấy khả năng tăng cường lực kéo kém. Sự thay đổi nhiệt độ trộn, nồng độ DCP và tỷ lệ PS-so với-SBS có tác động tối thiểu đến khả năng tăng cường lực kéo của PS/SBS trộn nóng chảy. Độ bền kéo tăng lên khi nồng độ DCP tăng lên đến 0.1%; và vượt qua mức này, độ bền kéo bắt đầu giảm. Độ bền va đập cải thiện đáng kể khi nồng độ SBS trong ma trận PS tăng lên, và sự cải thiện này vượt quá gấp đôi độ bền va đập của PS nguyên chất.

Từ khóa

#Polystyrene #SBS #copolymer #đánh giá độ bền va đập #tính chất cơ học #lưu biến kéo đơn trục

Tài liệu tham khảo

Hassan MM, Koyama K (2015) Thermal, physicomechanical, and morphological properties of HDPE graft-copolymerized with polystyrene. Polym Adv Technol 26:1285–1293 Sukhareva LA, Legonkova OA, Yakovlev VS (2008) Polymers for packaging and containers in food industry. CRC Press, Boca Raton, pp 455–490 Piorkowska E, Argon AS, Cohen RE (1993) Izod impact strength of polystyrene-based blends containing low molecular weight polybutadiene. Polymer 34:4435–4444 Zhou C, Wu S, Yang B, Gao Y-X, Wu G-F, Zhang H-X (2015) Toughening polystyrene by core-shell rubber particles: analysis of the internal structure and properties. Polym Polym Compos 23:317–324 Guo TY, Tang GL, Hao GJ, Song MD, Zhang BH (2003) Toughening modification of PS with n-BA/MMA/styrene core–shell structured copolymer from emulsifier-free emulsion polymerization. J Appl Polym Sci 90:1290–1297 Wu DY, Svazas Y (2006) Micro- and nano-sized calcium carbonate toughened polystyrene. J Nanosci Nanotechnol 6:3919–3922 Yang H, Zhang X, Qu C, Li B, Zhang L, Zhang Q, Fu Q (2007) Largely improved toughness of PP/EPDM blends by adding nano-SiO2 particles. Polymer 48:860–869 Han J-J, Huang H-X (2011) Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 120:3217–3223 Feng F, Zhao X-W, Ye L (2011) Structure and properties of ultradrawn polylactide/thermoplastic polyurethane elastomer blends. J Macromol Sci B 50:1500–1507 Sugimoto M, Masubuchi M, Takimoto J, Koyama K (2001) Melt rheology of polypropylene containing small amounts of high-molecular-weight chain. 2. Uniaxial and biaxial extensional flow. Macromolecules 34:6056–6063 Fowler MW, Baker WE (1988) Rubber toughening of polystyrene through reactive blending. Polym Eng Sci 28:1427–1433 Schneider M, Pith T, Lambla M (1997) Toughening of polystyrene by natural rubber-based composite particles: Part I Impact reinforcement by PMMA and PS grafted core-shell particles. J Mater Sci 32:6331–6342 Michler GH (1990) Formation of crazes in polymer blends. Macromol Chem: Macromol Sympos 38:195–204 Doufas AK, Rice L, Thurston W (2011) Shear and extensional rheology of polypropylene melts: experimental and modeling studies. J Rheol 55:95–126 Wang J, James DF, Park CB (2010) Planar extensional flow resistance of a foaming plastic. J Rheol 54:95–116 Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846 Lentzakis H, Vlassopoulos V, Read DJ, Lee H, Chang T, Driva P, Hadjichristidis N (2013) Uniaxial extensional rheology of well-characterized comb polymers. J Rheol 57:605–625 Ahirwal D, Filipe S, Neuhaus I, Busch M, Schlatter G, Wilhelm M (2014) Large amplitude oscillatory shear and uniaxial extensional rheology of blends from linear and long-chain branched polyethylene and polypropylene. J Rheol 58:635–658 Huang Q, Magnus M, Alvarez NJ, Koopmans R, Hassager O (2016) A new look at extensional rheology of low-density polyethylene. Rheol Acta 55:343–350 Sugimoto M, Suzuki Y, Hyun K, Ahn KH, Ushioda T, Nishioka A, Taniguchi T, Koyama K (2006) Melt rheology of long-chain-branched polypropylenes. Rheol Acta 46:33–46 Stange J, Munstedt H (2006) Rheological properties and foaming behavior of polypropylenes with different molecular structures. J Rheol 50:907–927 Minegishi A, Nishioka A, Takahashi T, Masubuchi Y, Takimoto J, Koyama K (2001) Uniaxial elongational viscosity of PS/a small amount of UHMW-PS blends. Rheol Acta 40:329–338 Kurose T, Takahashi T, Sugimoto M, Koyama K (2005) Uniaxial elongational viscosity of PC/a small amount of PTFE blend. Nihon Reoroji Gakkaishi 33:173–182 Liu J, Lou L, Yu W, Liao R, Li R, Zhou C (2010) Long chain branching polylactide: structures and properties. Polymer 51:5186–5197 Li S, He G, Liao X, Park CB, Yang Q, Li G (2017) Introduction of a long-chain branching structure by ultraviolet-induced reactive extrusion to improve cell morphology and processing properties of polylactide foam. RSC Adv 7:6266–6277 Sugimoto M, Tanaka T, Masubuchi Y, Takimoto J, Koyama K (1999) Effect of chain structure on the melt rheology of modified polypropylene. J Appl Polym Sci 73:1493–1500 Kurzbeck S, Oster F, Munstedt H (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43:359–374 Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37:9465–9472 Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128 Takahashi T, Takimoto J-I, Koyama K (1999) Elongational viscosity for miscible and immiscible polymer blends. II. Blends with a small amount of UHMW polymer. J Appl Polym Sci 72:961–969 Wagner MH, Bastian H, Hachmann P, Meissner J, Kurzbeck S, Munstedt H, Langouche F (2000) The strain-hardening behavior of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109 Yang L, Huang J, Lu X, Jia S, Zhang H, Jin G, Qu J (2015) Influences of dicumyl peroxide on morphology and mechanical properties of polypropylene/poly(styrene-b-butadiene-b-styrene) blends via vane-extruder. J Appl Polym Sci 132:41543 Ghosh P, Ray P (1991) Studies on polybutadiene rubber (PBR)-polystyrene (PS) interpenetrating polymer network. J Mater Sci 26:6004–6012 Jehani Y, Ghetmiri M, Vaseghi MR (2015) Polypropylene and chain extension of poly(ethylene terephthalate) on the thermal behavior, rheology and morphology of their blends. RSC Adv 5:21620–21628 Su F-H, Huang H-X (2010) Rheology and melt strength of long chain branching polypropylene prepared by reactive extrusion with various peroxides. Polym Eng Sci 50:342–351 Münstedt H (1980) Dependence of elongational behavior of polystyrene melts on molecular weight and molecular weight distribution. J Rheol 24:847 Krupa I, Luyt AS (2001) Mechanical properties of uncrosslinked and crosslinked linear low-density polyethylene/wax blends. J Appl Polym Sci 81:973–980 Ha CS, Kim SC (1989) Tensile properties and morphology of the dynamically cured EPDM and PP/HDPE ternary blends. J Appl Polym Sci 37:317–334 Lungulescu EM, Zaharescu T (2016) Stabilization of polymers against photodegradation. In: Dan R, Visakh PM (eds) Photochemical behavior of multicomponent polymeric-based materials. Springer, Basel, p 187 Munteanu SB, Brebu M, Vasile C (2005) Thermal and thermo-oxidative behavior of butadiene-styrene copolymers with different architectures. Polym Degrad Stab 89:501–512 Zhou J, Du X-H, Yue W (2017) Study on the blend of SBS and polystyrene, and properties of their mixture. Adv Eng Res 112:27–30 Thomann Y, Thomann R, Hasenhindl A, Mülhaupt R (2009) Gradient interfaces in SBS and SBS/PS blends and their influence on morphology development and material properties. Macromolecules 42:5684–5699 Chung Y-C, Lee BH, Jo SH, Chun BC (2015) Preparation and characterization of polyurethane copolymer grafted with polystyrene side chains. Polym Plast Technol Eng 54:1066–1076 Andreopoulos AG, Tarantili PA, Anastassakis P (2007) Compatibilizers for low-density polyethylene/polypropylene blends, Novel determination of the crystallinity of syndiotactic polystyrene using FTIR spectrum. J Macromol Sci A 36:1113–1122 Masson J-F, Pelletier L, Collins P (2001) Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J Appl Polym Sci 79:1034–1041 Wang S-M, Chang J-R, Tsiang RC-C (1996) Infrared studies of thermal oxidative degradation of polystyrene-block polybutadiene-block polystyrene thermoplastic elastomers. Polym Degrad Stab 52:51–57