Thermal stability and phase decomposition of nitrided layers on 316L and 310 austenitic stainless steels
Tài liệu tham khảo
Martinavicius, 2012, Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel, Acta Mater., 60, 4065, 10.1016/j.actamat.2012.04.014
de Souza, 2012, Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): influence of the different ratio of the (N2/H2) on the nitride layers properties, Vacuum, 86, 2048, 10.1016/j.vacuum.2012.05.008
Saker, 1991, Properties of sputtered stainless steel-nitrogen coatings and structural analogy with low temperature plasma nitride layers of austenitic steel, Mater. Sci. Eng. A, 140, 702, 10.1016/0921-5093(91)90500-M
Lo, 2009, Recent developments in stainless steel, Mater. Sci. Eng., R65, 39, 10.1016/j.mser.2009.03.001
Hannula, 1989, 88, 266
Zang, 1985, Structure and corrosion resistance of plasma nitridied stainless steel, Surf. Eng., 1-2, 131, 10.1179/sur.1985.1.2.131
Menthe, 1999, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surf. Coat. Technol., 116–119, 199, 10.1016/S0257-8972(99)00085-7
Marchev, 1999, The metastable m phase layer on ion-nitrided austenitic stainless steel: part 2: crystal structure and observation of its two-directional orientation anisotropy, Surf. Coat. Technol., 112, 67, 10.1016/S0257-8972(98)00802-0
Renevier, 1999, Low temperature nitriding of AISI 316L stainless steel and titanium in a low pressure arc discharge, Surf. Coat. Technol., 111, 128, 10.1016/S0257-8972(98)00722-1
Willianson, 1994, Metastable phase formation and enhanced diffusion in f.c.c alloys under high dose, high flux nitrogen implantation at high and low ion energies, Surf. Coat. Technol., 65, 15, 10.1016/S0257-8972(94)80003-0
Borges, 2000, Decreasing chromium precipitation in AISI 304 stainless steel during the plasma-nitriding process, Surf. Coat. Technol., 123, 112, 10.1016/S0257-8972(99)00506-X
Fewell, 2000, Nitriding at low temperature, Surf. Coat. Technol., 131, 284, 10.1016/S0257-8972(00)00793-3
Kim, 2003, Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma, Surf. Coat. Technol., 163–164, 380, 10.1016/S0257-8972(02)00631-X
Marchev, 1998, Condition for the formation of a martensitic single-phase compound layer in ion-nitrided 316L austenitic stainless steel, Surf. Coat. Technol., 99, 225, 10.1016/S0257-8972(97)00532-X
Williamson, 1997, Relative roles of ion energy, ion lux, and sample temperature in low-energy nitrogen ion implantation of, FeCrNi stainless steel, Nucl. Inst. Methods B, 127–128, 930, 10.1016/S0168-583X(97)00033-5
Goutijo, 2006, Study of the S phase formed on plasma-nitrided AISI 316L stainless steel, Mater. Sci. Eng., A431, 315, 10.1016/j.msea.2006.06.023
Oliveira, 2003, Rev. Bras. Apl. Vacuo, 22, 63
Riviere, 2007, Microstructure of expanded austenitic in ion-nitrided AISI 316L single crystal, Surf. Coat. Technol., 201, 8210, 10.1016/j.surfcoat.2006.01.080
Christiansen, 2004, On the crystallographic structure of S-phase, Scr. Mater., 50, 35, 10.1016/j.scriptamat.2003.09.042
Moska Loviene, 2012, Stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Vacuum, 86, 1552, 10.1016/j.vacuum.2012.03.026
Saker, 1993
Li, 2002, Active screen plasma nitriding of austenitic stainless steel, Surf. Eng., 18, 453, 10.1179/026708402225006240
Li, 2014, Surface of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Appl. Surf. Sci., 298, 243, 10.1016/j.apsusc.2014.01.177
Galdikas, 2013, Swelling effect on stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Comput. Mater. Sci., 72, 140, 10.1016/j.commatsci.2013.02.007
Renevier, 2000, New trends on nitriding in low pressure arc discharge studied by optical emission spectroscopy, Surf. Coat. Technol., 86–87, 24, 10.1016/S0257-8972(00)00538-7
Fernandes, 2013, Microstructure of nitrided and nitrocarburized layers produced on a superaustenitic stainless steel, J. Mater. Res. Technol., 2, 158, 10.1016/j.jmrt.2013.01.007
Manova, 2015, Comparability and accuracy of nitrogen depth profiling in nitride austenitic stainless steel, Nucl. Inst. Methods Phys. Res. B, 349, 106, 10.1016/j.nimb.2015.02.050
Xu, 2000, Microstructure characterization of plasma nitrided austenitic stainless steel, Surf. Coat. Technol., 132, 270, 10.1016/S0257-8972(00)00905-1
Stinville, 2014, Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: mechanical behavior of the nitrided layer and impact of nitriding residual stresses, Mater. Sci. Eng. A, 605, 51, 10.1016/j.msea.2014.03.039
Anjos, 2015, Low-temperature plasma nitrocarburizing of the AISI 420 martensitic stainless steel: microstructure and process kinetics, Surf. Coat. Technol., 275, 51, 10.1016/j.surfcoat.2015.03.039
Manfridini, 2017, Structural characterization of plasma nitrided interstitial-free steel at different temperatures by SEM, XRD and Rietveld method, J. Mater. Res. Technol., 6, 65, 10.1016/j.jmrt.2016.07.001
Parascandola, 2000, The nitrogen transport in austenitic stainless steel at moderate temperatures, Appl. Phys. Lett., 76, 16, 10.1063/1.126294
Mandl, 2003, Nitrogen diffusivity in expanded austenitic stainless steel austenite, Surf. Coat. Technol., 174–175, 1191, 10.1016/S0257-8972(03)00454-7
Christiansen, 2008, Nitrogen diffusion and nitrogen depth profile in expand, Mater. Sci. Technol., 24, 159, 10.1179/026708307X232901