Thermal stability and phase decomposition of nitrided layers on 316L and 310 austenitic stainless steels

Surface and Coatings Technology - Tập 325 - Trang 533-538 - 2017
R. Djellal1, A. Saker1, B. Bouzabata1, D.E. Mekki2
1LM2S – Badji Mokhtar University, Annaba, Algeria
2LESIMS-Badji Mokhtar University, Annaba, Algeria

Tài liệu tham khảo

Martinavicius, 2012, Nitrogen interstitial diffusion induced decomposition in AISI 304L austenitic stainless steel, Acta Mater., 60, 4065, 10.1016/j.actamat.2012.04.014 de Souza, 2012, Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): influence of the different ratio of the (N2/H2) on the nitride layers properties, Vacuum, 86, 2048, 10.1016/j.vacuum.2012.05.008 Saker, 1991, Properties of sputtered stainless steel-nitrogen coatings and structural analogy with low temperature plasma nitride layers of austenitic steel, Mater. Sci. Eng. A, 140, 702, 10.1016/0921-5093(91)90500-M Lo, 2009, Recent developments in stainless steel, Mater. Sci. Eng., R65, 39, 10.1016/j.mser.2009.03.001 Hannula, 1989, 88, 266 Zang, 1985, Structure and corrosion resistance of plasma nitridied stainless steel, Surf. Eng., 1-2, 131, 10.1179/sur.1985.1.2.131 Menthe, 1999, Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding, Surf. Coat. Technol., 116–119, 199, 10.1016/S0257-8972(99)00085-7 Marchev, 1999, The metastable m phase layer on ion-nitrided austenitic stainless steel: part 2: crystal structure and observation of its two-directional orientation anisotropy, Surf. Coat. Technol., 112, 67, 10.1016/S0257-8972(98)00802-0 Renevier, 1999, Low temperature nitriding of AISI 316L stainless steel and titanium in a low pressure arc discharge, Surf. Coat. Technol., 111, 128, 10.1016/S0257-8972(98)00722-1 Willianson, 1994, Metastable phase formation and enhanced diffusion in f.c.c alloys under high dose, high flux nitrogen implantation at high and low ion energies, Surf. Coat. Technol., 65, 15, 10.1016/S0257-8972(94)80003-0 Borges, 2000, Decreasing chromium precipitation in AISI 304 stainless steel during the plasma-nitriding process, Surf. Coat. Technol., 123, 112, 10.1016/S0257-8972(99)00506-X Fewell, 2000, Nitriding at low temperature, Surf. Coat. Technol., 131, 284, 10.1016/S0257-8972(00)00793-3 Kim, 2003, Characteristics of martensitic stainless steel nitrided in a low-pressure RF plasma, Surf. Coat. Technol., 163–164, 380, 10.1016/S0257-8972(02)00631-X Marchev, 1998, Condition for the formation of a martensitic single-phase compound layer in ion-nitrided 316L austenitic stainless steel, Surf. Coat. Technol., 99, 225, 10.1016/S0257-8972(97)00532-X Williamson, 1997, Relative roles of ion energy, ion lux, and sample temperature in low-energy nitrogen ion implantation of, FeCrNi stainless steel, Nucl. Inst. Methods B, 127–128, 930, 10.1016/S0168-583X(97)00033-5 Goutijo, 2006, Study of the S phase formed on plasma-nitrided AISI 316L stainless steel, Mater. Sci. Eng., A431, 315, 10.1016/j.msea.2006.06.023 Oliveira, 2003, Rev. Bras. Apl. Vacuo, 22, 63 Riviere, 2007, Microstructure of expanded austenitic in ion-nitrided AISI 316L single crystal, Surf. Coat. Technol., 201, 8210, 10.1016/j.surfcoat.2006.01.080 Christiansen, 2004, On the crystallographic structure of S-phase, Scr. Mater., 50, 35, 10.1016/j.scriptamat.2003.09.042 Moska Loviene, 2012, Stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Vacuum, 86, 1552, 10.1016/j.vacuum.2012.03.026 Saker, 1993 Li, 2002, Active screen plasma nitriding of austenitic stainless steel, Surf. Eng., 18, 453, 10.1179/026708402225006240 Li, 2014, Surface of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time, Appl. Surf. Sci., 298, 243, 10.1016/j.apsusc.2014.01.177 Galdikas, 2013, Swelling effect on stress induced and concentration dependent diffusion of nitrogen in plasma nitrided austenitic stainless steel, Comput. Mater. Sci., 72, 140, 10.1016/j.commatsci.2013.02.007 Renevier, 2000, New trends on nitriding in low pressure arc discharge studied by optical emission spectroscopy, Surf. Coat. Technol., 86–87, 24, 10.1016/S0257-8972(00)00538-7 Fernandes, 2013, Microstructure of nitrided and nitrocarburized layers produced on a superaustenitic stainless steel, J. Mater. Res. Technol., 2, 158, 10.1016/j.jmrt.2013.01.007 Manova, 2015, Comparability and accuracy of nitrogen depth profiling in nitride austenitic stainless steel, Nucl. Inst. Methods Phys. Res. B, 349, 106, 10.1016/j.nimb.2015.02.050 Xu, 2000, Microstructure characterization of plasma nitrided austenitic stainless steel, Surf. Coat. Technol., 132, 270, 10.1016/S0257-8972(00)00905-1 Stinville, 2014, Monotonic mechanical properties of plasma nitrided 316L polycrystalline austenitic stainless steel: mechanical behavior of the nitrided layer and impact of nitriding residual stresses, Mater. Sci. Eng. A, 605, 51, 10.1016/j.msea.2014.03.039 Anjos, 2015, Low-temperature plasma nitrocarburizing of the AISI 420 martensitic stainless steel: microstructure and process kinetics, Surf. Coat. Technol., 275, 51, 10.1016/j.surfcoat.2015.03.039 Manfridini, 2017, Structural characterization of plasma nitrided interstitial-free steel at different temperatures by SEM, XRD and Rietveld method, J. Mater. Res. Technol., 6, 65, 10.1016/j.jmrt.2016.07.001 Parascandola, 2000, The nitrogen transport in austenitic stainless steel at moderate temperatures, Appl. Phys. Lett., 76, 16, 10.1063/1.126294 Mandl, 2003, Nitrogen diffusivity in expanded austenitic stainless steel austenite, Surf. Coat. Technol., 174–175, 1191, 10.1016/S0257-8972(03)00454-7 Christiansen, 2008, Nitrogen diffusion and nitrogen depth profile in expand, Mater. Sci. Technol., 24, 159, 10.1179/026708307X232901