Thermal shock problem in a homogeneous isotropic hollow cylinder with energy dissipation

Mohamed I. A. Othman1, Ibrahim A. Abbas2,3
1Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
2Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt
3Department of Mathematics, Faculty of Science, Jazan University, Jazan, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. L. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff & Noordhoof International, Alphen Aan Den Rijn (1978).

D. E. Carlson, Linear Thermoelasticity, Handbuch der Physik. Via/2 97, 346 (1972).

D. S. Chandrasekharaiah, “A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation," J. Elasticity, 43, 279–283 (1996).

R. B. Hetnarski and J. Ignazack, “Generalized thermoelasticity,” J. Thermal Stresses, 22, 541–470 (1999).

A. E. Green and P. M. Naghdi, “A re-examination of the basic postulates of thermomechanics,” Proc. R. Soc. London A, 432, 171–194 (1991).

A. E. Green and P. M. Naghdi, “On undamped heat waves in an elastic solid,” J. Therm. Stresses, 15, 253–264 (1992).

A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity, 31, 189–208 (1993).

D. S. Chandrasekharaiah and K. S. Srinath, “One-dimensional waves in a thermoelastic half space without energy dissipation,” Int. J. Eng. Sci., 34,1447–1455 (1996).

D. S. Chandrasekharaiah and K. S. Srinath, “Axisymmetric thermoelastic interactions without energy dissipation in an unbounded body with cylindrical cavity,” J. Elasticity, 46, No. 1, 19–31 (1997).

M. I. A. Othman, S. Y. Atwa, and R. M. Farouk, “Generalized magneto-thermo-visco-elastic plane waves under the effect of rotation without energy dissipation,” Int. J. Eng Sci., 46, 639–653 (2008).

M. I. A. Othman and Y. Q. Song, “The effect of rotation on the reflection of magneto-thermoelastic waves under thermoelasticity without energy dissipation,” Acta Mech., 184, 189–204 (2006).

M. I. A. Othman and Y. Q. Song, “Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation,” Int. J. Solids Struct., 44, 5651–5664 (2007).

M. I. A. Othman and Y. Q. Song, “Reflection and refraction of thermo-visco-elastic waves at the interface between two micropolar viscoelastic media without energy dissipation,” Can. J. Phys., 85, 797–812 (2007).

A. E. Green and K. A. Lindsa, “Thermoelasticity,” J. Elast., 2, 1–7 (1972).

H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermo-elasticity,” J. Mech. Phys. Solids, 15, 299–309 (1967).

M. I. A. Othman, “Lord–Shulman theory under the dependence of the modulus of elasticity on the reference temperature in twodimensional generalized thermo-elasticity,” J. Therm. Stresses, 25, 1027–1045 (2002).

M. I. A. Othman, “Effect of rotation on plane waves in generalized thermo-elasticity with two relaxation times,” Int. J. Solids Struct., 41, 2939–2956 (2004).

M. I. A. Othman and Y. Q. Song, “Reflection of magneto-thermoelasticity waves with two relaxation times and temperature dependent elastic moduli,” Appl. Math. Model, 32, 483–500 (2008).

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method Fluid Dynamics, 5th Ed., Butterwoth-Heinemann (2000).

I. A. Abbas, “Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity,” Forsch Ingenieurwes, 71, 215–222 (2007).

H. Youssef and I. A. Abbas, “Thermal shock problem of generalized thermo-elasticity for an infinitely long annular cylinder with variable thermal conductivity,” Comput. Methods Sci. Technol., 13, No. 2, 95–100 (2007).

I. A. Abbas and A. N. Abd-alla, “Effects of thermal relaxations on thermo-elastic interactions in an infinite orthotropic elastic medium with a cylindrical cavity,” Arch. Appl. Mech., 78, 283–293 (2008).

J. N. Reddy, An Introduction to the Finite Element Method, 2nd Ed., McGraw-Hill, New York (1993).

R. D. Cook, D. S. Malkus, and M. E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, New York (1989).