Thermal properties of poly (vinyl alcohol)(PVA)/halloysite nanotubes reinforced nanocomposites
Tóm tắt
Natural halloysite nano clay with tubular structure was used for the preparation of polyvinyl alcohol (PVA) nanocomposites. A systematic and detailed study was conducted on the effect of nanotubes on the properties such as flame retardancy, water absorption capacity, and thermal stability of poly (vinyl alcohol) matrix. Morphological and structural characterizations of nanocomposites were performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and fourier transform infra red (FTIR) spectroscopy. XRD results showed peak broadening and disappearance in nanocomposites when compared to the peaks for nanotubes, indicating the better dispersion of nanotubes in the matrix. Owing to the hydrophilicity of nanotubes the nanocomposites exhibited enhanced water sorption properties. At higher temperature nano filler reinforced PVA showed better thermal stability and flammability due to barrier effect.
Tài liệu tham khảo
Abd El-Kader KM (2003) Spectroscopic behavior of poly (vinyl alcohol) films with different molecular weights after UV irradiation, thermal annealing, and double treatment with UV irradiation and thermal annealing. J Appl Polym Sci 88:589–594. doi:10.1002/app.11743
Krumova M, Lopez D, Bennavente R, Mijangos C, Perena JM (2000) Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol). Polymer 41:9265–9272. doi:10.1016/s0032-3861(00)00287-1
Suzuki M, Yoshida T, Koyama T, Kobayashi S, Kimura M, Hanabusa K, Shirai H (2000) Ionic conduction in partially phosphorylated poly (vinyl alcohol) as polymer electrolytes. Polymer 41:4531–4536. doi:10.1016/S0032-3861(99)00682-5
Borriello C, De Maria A, Jovic N, Montone A, Schwarz M, Antisari MV (2009) Mechanochemical exfoliation of graphite and its polyvinyl alcohol nanocomposites with enhanced barrier properties. Mater Manufact Proc 24:1053–1057. doi:10.1080/10426910903022346
Hassan CM, Peppas NA (2000) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65. doi:10.1007/3-540-46414-X_2
Lai S, Casu M, Saba G, Lai A, Husu J, Masci G (2002) Solid-state 13C NMR study of poly (vinyl alcohol) gels. Solid State Nucl Magn Res 21:187–196. doi:10.1006/snmr.2002.0059
Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly (l-lactide)-clay blend. J Polym Sci Part B: Polym Phys 35:389–396. doi:10.1002/(SICI)1099-0488(19970130)35:2<389
Hu X-L, Hou G-M, Zhang M-Q, Rong M-Z, Ruan W-H, Giannelis EP (2012) A new nanocomposite polymer electrolyte based on poly (vinyl alcohol) incorporating hypergrafted nano-silica. J Mater Chem 22:18961–18967. doi:10.1039/C2JM33156J
Ray SS, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096. doi:10.1021/nl020215
Paul M-A, Alexandre M, Degee P, Henrist C, Rulmont A, Dubois P (2003) New nanocomposite materials based on plasticized poly (l-lactide) and organo-modified montmorillonites: thermal and morphological study. Polymer 44:443–450. doi:10.1016/S0032-3861(02)00778-4
Lee JH, Park TG, Park HS, Lee DS, Lee YK, Yoon SC, Nam JD (2003) Thermal and mechanical characteristics of poly (l-lactic acid) nanocomposite scaffold. Biomaterials 24:2773–2778. doi:10.1016/S0142-9612(03)00080-2
Chiang M-F, Wu T-M (2010) Synthesis and characterization of biodegradable poly (l-lactide)/layered double hydroxide nanocomposites. Compos Sci Technol 70:110–115. doi:10.1016/j.compscitech.2009.09.012
Zaidi L, Kaci M, Bruzaud S, Bourmaud A, Grohens Y (2010) Effect of natural weather on the structure and properties of polylactide/Cloisite 30B nanocomposites. Polym Degrad Stab 95:1751–1758. doi:10.1016/j.polymdegradstab.2010.05.014
Mbhele ZH, Salemane MG, van Sittert CGCE, Nedeljkovic JM, Djokovic V, Luyt AS (2003) Fabrication and characterization of silver − polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024. doi:10.1021/cm034505a
Zhou WY, Guo B, Liu M, Liao R, Rabie ABM, Jia D (2010) Poly (vinyl alcohol)/halloysite nanotubes bionanocomposite films: properties and in vitro osteoblasts and fibroblasts response. J Biomed Mater Res Part A 93:1574–1587. doi:10.1002/jbm.a.32656
Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112:15742–15751. doi:10.1021/jp805657t
Guimaraes L, Enyashin AN, Seifert G, Duarte HA (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114:11358–11363. doi:10.1021/jp100902e
Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57. doi:10.1016/j.clay.2012.06.014
Pasbakhsh P, Ismail H, Fauzi MNA, Bakar AA (2010) EPDM/modified halloysite nanocomposites. Appl Clay Sci 48:405–413. doi:10.1016/j.clay.2010.01.015
Wang L, He X, Wilkie CA (2010) The utility of nanocomposites in fire retardancy. Materials 3:4580–4606. doi:10.3390/ma3094580
Hugget C (2004) Estimation of rate of heat release by means of oxygen consumption measurements. Fire materials 4:61–65. doi:10.1002/fam.810040202
Gilman JW, Jackson CL, Morgan AB, Harris R, Manias E, Giannelis EP, Wuthenow M, Hilton D, Philips SH (2000) Flammability properties of polymer − layered-silicate nanocomposites polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873. doi:10.1021/cm0001760
Zheng X, Wilkie CA (2003) Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate. Polym Degrad Stab 81:539–550. doi:10.1016/S0141-3910(03)00155-1
Ratna D, Divekar S, Sivaraman P, Samui AB, Chakraborty BC (2007) Poly (ethylene oxide)/clay nanocomposites for solid polymer electrolyte applications. Polym Int 56:900–904. doi:10.1002/Pi.2222
Ratna D, Abraham T, Karger- Kocsis J (2008) Thermomechanical and rheological properties of high molecular weight PEO/ Novolac blends. Macromol Chem Phys 209:723–733. doi:10.1002/macp.200700487